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It is argued on the basis of a new interface model that the lower critical dimension of
random-field Ising systems is two, in agreement with simple domain estimates.
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The lower critical dimension, d, , of the Ising
model in a random magnetic field (HFIM) has
been a puzzle for some years. Simple, physical
domain-wall arguments' at zero temperature (T)
suggest that random fields destroy the ferromag-
netic order whenever d & 2; that is, d, = 2. On the
other hand, arguments based on the equivalence,
order by order in perturbation theory, between
Qinzburg-Landau models with random fields in d
dimensions and those without random fields in d
-2 dimensions suggest' that d, is three for the
RFIM, two more than the d, for the pure Ising
problem.

Very recently calculations based on interface
models of the RFIM,' analogous to those used
to study the pure Ising model' for d =1+a, have
supported the conclusion d, = 3. A crucial ele-
ment of this ingenious line of reasoning is the
assertion' that at d = 3 the interface between do-
mains of up and down spins in the RFIM is rough. '
It is argued' that the failure to account for this
roughness in the original domain estimates' in-
validates those estimates. Moreover, experi-
ments on various physical realizations of the
RFIM' seem consistent with d, = 3.

In this paper we reconsider the interface ap-
proach to the RFIM, relying upon neither the
replica method' nor the supersymmetry argu-

ments' employed in the earlier treatments. Our
starting continuum interface Hamiltonian differs
significantly from those of the earlier calcula-
tions in that it is a nonanalytic function of the in-
terface coordinates, f(x). Simple power count-
ing shows that d, =2 for this Hamiltonian, in
agreement with the original' domain estimate.
%Ye argue that this conclusion is consistent with
the roughness of the interf ace at d = 3; indeed,
we find that the width, se, of the BFIM interface
varies as L" in d dimensions, where x —= (5 —d)/3
and L is the linear dimension of the system. The
interface is therefore rough (i.e., x & 0) whenever
d & 5p ln agreement with Pytte et g/. ' However~
if d&2 thenx(1 and w/L-0 as L-~. For d&2
the interface width thus diverges more slowly
than L: The interface is effectively smooth.
Note that Pytte et al. ' find x = (5 -d)/2, where-
upon m =- L for d & 3, consistent with their con-
clusion d, = 3.

Our starting point is the continuum Hamiltonian
describing the (d —1)-dimensional interface be-
tween one domain of discrete Ising spins pointing
up and one down. Let the shape of the interface
be defined by z =f(x) [x designating the (d —1) in-
terface coordinates] and let h(x, z) denote the
field at (x,z). The Hamiltonian divided by the
temperature is

y(x )

II/T = T 'J d" 'g [+1+(vf-)']"-+ 5 h(x, z)dz}. (1)

J is the exchange interaction strength, and Jd' "x[1+(vf)']' ' the area of the interface. The field ener-

gy is arbitrarily chosen to be zero at f=0.
Note that since h(x, z) is a random function of z, II is a nonanalytic function of f(x). This nonanalytic-

ity becomes more explicit in the replica formalism; choosing, e.g. , at each point (x,z) a Gaussian
probability distribution of width lb. for the random field one obtains, following a trivial integration,
the replica Hamiltonian"

(2)
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for n-0; here 0(x)=1,—,, 0 for x &0, x=0, x &0. The relationship between (2) and the analytic Hamilto-
nian of Bef. 3, which was derived directly in the replica language on the basis of symmetry considera-
tions without reference to a nonreplicated interface Hamiltonian [such as (1)] in which the random field
appe3rs explicitly, is far from transparent. However, an intriguing connection between the two ap-
proaches follows from consideration of (1) in the case where the random fields h(x, z) are independent
of z; i.e. , h(x, z)=h(x). The second term of (1) for this "random rod" model is analytic: f(x)h(x). The
replica method applied to this model with h(x) distributed according to a Gaussian yields the interface
Hamiltonian

(3)

The final term of (3) is identical to the lowest-
order nontrivial. interaction term in the model. of
Ref. 3. Trivial dimensional considerations' show
that both models have lower critical dimension
d, = 3. Moreover, direct application of the do-
main argument' to the random-rod model like-
wise predicts d, =3. To see this, imagine creat-
ing a domain of linear size I- of down spins in a
d-dimensional random-rod model assumed fer-
romagnetically ordered in the up direction. For
large L the surface-energy cost of such a domain
is, as usual, proportional to L" ', while the field
energy goes like LL'" " '-L"'"~' (which is larg-
er t
call
Stl

pro
T

and

that
ran

! explain the result d, = 3 of that work. However,
since the compl. ete Hamil. tonian of Ref. 3 is con-
siderably more complicated than (3) (and has
different symmetry properties), it is unclear
that the two models are equivalent.

That d, = 2 for the Hamiltonian (2) follows from
an el.ementary scaling argument: Under the seal. e
transformation x=bx', the length f(x) also trans-
forms as f(x) =bf'(x'), whereupon the definitions

(4)

han the L' ' in an RFIM). It is thus energeti- preserve the functional form of 0„. Equations

y favorable to create l.arge domains that de- (4) (the lowest-order renormalization-group re-
oy ferromagnetic order whenever (d+ 1)/2 cursion relations) show that b, is an irrel. evant
—1 or d &3; i.e. , d, = 3 for the random-rod variable for d &2; therefore d, =2. At first
blem. glance this result seems inconsistent with per-
he connection described above between (3) turbation theory performed with (2) [or equivalent-
the Hamil. tonian studied in Bef. 3 suggests ly, (1)]. If, e.g. , one expands the surface ten-
the latter may be more appropriate to the sion c =——T ln Tr exp(-H„/T)/nL~ ' (L being the

dom-rod model than to the RFIM. This would l.inear dimension of the system) in powers of b,

in the n = 0 limit, one obtains

g =g gj ~2L & ~& 2(g/T3~2)[1 po(L «+~~2g J &~~T 3~2)] (5)

where 0, is the surface tension of the pure sys-
tem (b. =0) andA is a numerical constant. Since
for all d & 3 the term of order ~ diverges for L
-~, (5) suggests (or is at least consistent with)

d, = 3 rather than d, = 2. Were d, = 3 in the RFIM
one would, for all d&3, expect 0 to drop discon-
tinuously from 0, at~ =0 to zero for al. l. L &0;
any attempt to expand 0 in powers of ~ should
therefore fail, , as does (5), for d &3. The failure
of perturbation theory for d &3 does not neces-
sarily impl. y d, = 3, however. Indeed, we assert
on the basis of a renormalization-group estimate
that, at low T for d&2, 0 —0, -6' as L —0 with

y = 2(d —1)/(d+ 1); thus —', &y &1 for 2 &d & 3.
Since y &1 for d &. an expansion such as (5) in
integral powers of ~ must break down, with no

implication that the RFIM is disordered for ~ & 0.
The calculation, of which only the barest out-

l.ine can be presented here, is similar in spirit
to the original phase-space cell analysis of Wil-
son. '" Given a particular set of random fields,
h(x, z), we attempt to account approximately for
fluctuations of the interface of progressively
longer wavelength. We imagine f(x) expanded in
terms of an orthonormal set of functions q z(x):
f= Q ~y ~(x)q ~. The y ~(x) are chosen to be "wave
packets" with reasonably wel. l-defined locations
and magnitudes of Vy ~(x) (i.e. , "momenta").
Now substitute in (1)f=f, +f„where f, is "slowly
varying, " i.e. , essentially flat over length scales
& ba, while f, varies over scales between a and

ba. Here a is the short-distance cutoff of the
theory and b ()1) the scale factor. " The task is
now to calculate, for given fixed f,(x) (taken as
constant over the region occupied by a given
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packet of size & ba), the contribution to the sur-
face tension due to f„ i.e. , to variations in the
interface over the shortest length scales.

This contribution can be estimated for each of
the smallest wave packets independentl, y; an ele-
mentary calculation (equivalent in essence to the
domain argument' applied to a random system of
size ba) gives the energy per unit area, H», of
a given packet as a function of its coefficient q
(the subscripts A. are suppressed and we now

adopt units in which a=1 to eliminate the super-
fluous dependence of our formulas on a):

bd 1H gb 2(q2 gJ- lg 1/2~
q~

1/2b (d+7)/d) (6)

Here C is a function of q, random in both mag-
nitude and sign, of order unity. Since any wave
packet g localized in a region of linear size b is
normalized so that fdd "xq12=1, y b'-" " ' and

Vy -b '"'" '. The two terms of (6) are thus sim-
pl. y interpreted as an exchange or boundary term
[b" '(Vp)'q'] and a random-field volume energy
(b' '~qual~)'/2 for the packet y. The corresponding
thermally averaged surface tension a» is then

—b "T ln[ Jdq exp(- b" 'H» /T)] .

Having computed a'„one obtains from (4) the

once-renormalized version of Hamiltonian (1)
and repeats the calculation just described, there-
by determining the surface tension due to fluctu™e
ations on scales between b and O'. The total sur-
face tension, o, resulting from many such itera-
tions is then expressed as the series

lg

o(T,Z)= Q a„(T, ,b. , ),

where l~ —= InL/Inb, and T, = Tb'" "' and 6,
=Ah'" "' are the l-times-iterated versions of T
and ~, respectively.

At T = 0 the ground-state surface tension E»
-=a» (T = 0,6 ) is determined by minimizing H»
with respect to q. One finds, from (6) and (7),
that the total ground-state surface tension ap
—= a(T = O, b, ) is then

l~
1/3 Q [g (b2 d )1 ]2/3~

K, is a positive random number of order unity.
For d &2 the series (8) converges as L -~; ao is
therefore well defined, from which the stability
of the ferromagnetic ground state of the RFIM
for small 6 can be inferred.

At finite T,

a (T Z)- bl d T ln(Tb2/J) Q2&(TJ) 1/2b t3 dl/2 T ))T~

a»(T, A)-E» —Tb' d ln(vb /XT), T «Td, ,

(9a)

(9b)

where C' is a positive random number of order
unity and T = J

If the random field is sufficiently weak that T
» Td„ then (9a) is appropriate; since b, , /T, '/'

-(b. /T' ')b'" "' (8) comprises a series of
terms of the form b" ""/'. The sum clearly di-
verges for d & 3, suggesting d, = 3 at finite T.
This conclusion is too hasty, however. Since T, /
Td, - (T/T/3)b """', T, «Td, for sufficiently
large I, no matter how large T/Tz, is initially.
Indeed, T, /T z, ,

= 1 when I = I, = [8 in(T /T z) ] /(d
+1)lnb. For l &I, (9a) no longer holds and (9b)
must be substituted in (8), implying, for d &2,
the convergence of the series and hence the ex-
istence of ferromagnetic order even at finite T .
In other words, the variable T is sufficiently ir-
relevant that at large enough length scales the
problem effectively reduces to T =0. That the T
&T~ result (9a) suggests d, = 3 is ultimately
insignificant. Note that when d & 3 the terms of
(8) increase with I for l &I, [when (9a) holds] and
decreases with l for l &l, . The leading term of
the series thus occurs when l =l, where both (9a)

~ and (9b) are proportional to 6'" ""'". This is
the result we quoted earlier.

The connection of these results with the rough-
ness of the interface follows irom (6) and f
=Q „p lq 1„which yield for the average width, w,
of the interf ace at T = 0

lI
MI2 ~ 2 2 g 2/3 ~ g2(5- ff )l /3
ZU

Here qp is the value of q which minimizes +pg ln
(6). The results quoted earlier, ld/'-6' 'L"' "' '
b, ' '(inL), and b, ' ' for d&5, d =5, and d &5, re-
spectively, follow. These results, derived from
our continuum interface model. almost surely dif-
fer from those for the discrete lattice BFIM.
The critical dimension d~ below which the Ising
interface is always rough (w =~) is presumably
lower than the value five predicted here. We ar-
gue this by analogy to the roughening transition
in the pure Ising model, where continuum the-
ories give d~ = 3 whereas more careful treatments
of lattice effects'" show that actually d~ = 2.
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Since d„ for lattice RFIM is bounded above" by
five (our continuum estimate), our w(L) is pre-
sumably an upper bound for the true ~ of the lat-
tice RFIM. Our conclusions that m/L-0 as L
-~ for d =3 and that d, =2 should therefore be
valid for discrete lattice RFIM's.

One simple test of the validity of our model can
be performed at 7 = 0 for d = 1. The divergence of
the ferromagnetic correlation length $ as b, —0
at T = 0 can be obtained from (4): b, =he" "",
where l is the logarithm of the length scale. De-
fining l*(b. ) as the value of / at which 6, = I, one
has $-e' ' '-b. "~' ash. -0. In one dimension,

', in agreement both with the domain argu-
ment' and exact calculations" on the one-dimen-
sional RFIM; in two dimensions, "

$ -e' . Note
that the recursion relations of Refs. 3 Wd 4 pre-
dict instead $-b ' " "for d&3, or $-6 ' 'when
d= I and $ -b, ' for d=2.

As mentioned above, experiments performed
so far seem to show d, = 3 instead of 2. Further-
more, there have also been experiments' which
showed $ -4 ' for d =2. At present, we have no
explanation of these experimental data. "
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