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Based on a set of nonlinear rete equations with phonon-mediated transition rates cal-
culated from mean field theory, the coverage-dependent isothermal desorption time for
3He on graphite up to a coverage of 1.5 adlayers is determined. Prefactors in the Arrhen-
ius parametrization drop by 2 orders of magnitude as the heat of adsorption decreases
for increasing coverage, establishing a compensation effect in physisorption kinetics.

PACS numbers: 68.45.Da, 82.65.My

A gas is said to physisorb onto the surface of a
solid if the net interaction between a gas particle
and the solid is accounted for by an effective sur-
face potential V, (r) which for an inert gas is well
approximated by a sum V, (r) =p,. V(r —r,. ) where
V(r —r, ) is the two-body potential between a gas
particle at r and a constituent particle of the
solid at lattice site r;. Particles trapped into
the bound states of V, (r) form the adsorbate. At
very low (submonolayer) coverages 9, we may
neglect the interactions between the adparticles.
However, as 0 approaches unity and the average
separation of gas particles in the adsorbate ap-
proaches that of a liquid, their mutual interac-
tion potential plays a crucial role in ensuring
saturation in a (mobile) fluid adsorbate or caus-
ing crystallization in the adsorbed film. We have
recently developed a mean-field theory" to
describe an adsorbate of nonzero coverage in
equilibrium with the gas phase. Such a theory is

[-(5'/2m) d'/dr ' + V, (r ) —E";]y";

eminently suited to study the adsorption and de-
sorption kinetics in such systems, a task that
two-dimensional theories, in which the adsorbate
is totally decoupled from the gas phase, have
difficulty in tackling. For the study of adsorption
kinetics it is important, for example, to know

what changing environment additional particles
arriving from the gas phase will experience as
the coverage on the surface builds up. In a single-
particle picture this necessitates the construction
of an effective coverage-dependent surface poten-
tial given by V, (r, 0) = V, (r) +V &(r, 8), where
V, (r) is the interaction of a single gas particle
with the solid, referred to from now on as the
bare surface potential. V &(r, 8) is the potential
arising from the mean field experienced by a gas
particle in the presence of all other gas particles
already in the surface region at a given coverage

It can be calculated as a Slater average from
the self-consistent solutions of the temperature-
dependent Hartree-Fock equations

(r)+Z; n; J d~'V. ~~(lr-r 'l)y;*(r')
x [(2s+1)q";(r')y;(r)+y";(r)y-, (r ')]=0, (1)

where n;" is the occupation function of the j th
state; s is the spin of the adsorbing gas particle,
obeying Fermi-Dirac (minus sign) or Bose-Ein-
stein (plus sign) statistics. V,ff is the effective
two-body interaction between gas particles whose
short-range repulsion is suitably softened which,
for gas particles obeying Fermi-Dirac statistics,
can be done by employing Brueckner theory in
the local density approximation. " For mobile

! adsorbates the bare surface potential can be ap-
proximated by a function of the distance z from
the surface only, i.e., V, (r) = V, (z), so that an
Ansatz g; (r ) = y";(z) exp[i q p ] is justified [r
=(p, z); q is the particle momentum in the sur-
face plane] reducing (1) curn grano satis to a
one-dimensional theory for the wave functions
y;(z) and the energies e, =E"; -6'q'/2m and re-
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suiting in a one-dimensional effective coverage-
dependent surface potential V, (z, 0). For details
we refer the reader to Refs. 2 and 3. To illus-

e-gray ite sys-trate the main results for the 'He- h t
tern, relevant to the following discussion of
physisorption kinetics we turn to F . i. Tn o ig. . The
upper panel gives the bare surface pote t' 1 V, (z)
at zero coverage constructed by averaging the
'He-C two-body Lennard-Jones interaction lat-
erally along the graphite surface and summing
over the lattice planes. ' Indicated are the four
bound-state energies; also given are the (squared)
wave functions of the lowest two bound states. As
the coverage builds up to a monolayer (center
panel m Fag. 1) V, (z, 8) develops a repulsive bar-
rier that keeps additional particles confined to
a second adlayer. Whereas the (squared) wave
functions

~ y, ~' and the energy 6, of the ground
state remain more or less unchanged, the ex-

their
cited states get modified considerabl th t

eir energies move up and their wave functions
move out into the position of the second [ ~ q, (z) j']
and third [ ~ y, (z) ~'] adlayer; see lower panel in

Fig. 1.
At very low ("zero" ) coverage physisorption

kinetics is, in systems like helium on graphite,
controlled by a set of linear rate equations for
the occupation function n= ' Th lis is no longer
the case at nonzero coverage as one must taccoun
or e fact that transitions into some state will

now depend on whether this state is occupied or
not. Thus the time evolution of the occupation
function is controlled by'

dn-;/dt
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FIG. 1. Effective sur face potential single- t I
wave functioctxons, and bound-state energies for 3He on
grap ite at T = 12 K and different cover 0 l-
cul

coverages 0, cal-
ated xn Hartree-Pock approzim ti Ma on. axlmuIIl

Dlonolayer coverage 0.107 A ' , z, o m. kelvms.

�

=$78-;-; n-;(1 ~ n-;) -+7Jt-, -, n-;(1*n-;),

where

2 4 6

here the plus (minus) sign applies if the adsorb-
ing particles obey Bose-Einstein (Fermi-Dirac)
statistics. The index i is a set of quantum num-
bers characterizing a gas particle; e
mobile adsorbate we have i =(i, q). The transi-
tion probabilities R; "; describe bound-state-bound-
state, bound-state-continuum, and continuum-

turbation theory as one-ph
p ysisorbed gas-solid s stbound-state transitions. In weakly coupled ph b d

onon processes so that' (for E"&E'.p b d y ems they are calculated in per-

12

a-, -, =(~/M, nr, )g ~- ' d~ -+(~) '( -
-; — - n +y";(r) a(E"; -E"+bur-)( In'" +1) .1 ] p p (3)

Here n ~ is the Bis e Bose-Einstein occupation function for a bonopoo o gy

Isothermal desor tion isp phenomenologically described b a sim l
where t, (8) is the, in generala cover age -dependent, des or tion t'

y a simple rate equation d6/dt =-0/t (6)

ploy the following procedure: (1) F
p ion ime. To calculate the latter w

or a gas-solid s stem '
we em-

y in equilibrium at a pressure P dan a temper-
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ature T, i.e. , with occupation functions n";

=(exp[0(E; —p)]+1} ' for fermonic gas particles
('He) where p. is the chemical potential of an ideal
(classical) gas in front of the solid, the Hartree-
Fock equations (1) are solved yielding single-
particle wave functions P;(r) = y, (z) exp(iq. p)
and energies E; = e; +k'q'/2m at a coverage 9

=P; n";/n;(max) where n";(max) is the maximum
occupation of the ith state corresponding to mono-
layer density. To ensure saturation in our theory
we introduced a cutoff q, for the summation over
the two-dimensional lateral momentum q in the
surface plane. (2) The transition probabilities
R-;; are calculated according to Eq. (3). (3) To
account for the removal of the gas phase in an
isothermal desorption experiment we drop con-
tinuum-bound-state transitions from Eq. (2) and

integrate these equations for a small time incre-
ment &t with the right-hand side determined by
the initial conditions. (4) With the new occupation
functions n";(b,t) (all continuum states are empty!)

corresponding to a reduced coverage 9(&t), we
enter the Hartree-Fock equations (1) and recalcu-
late g";(r) and E; self-consistently, after which
we can return to step (2) above. In this way we
generate the time evolution 9(t) from which we
can extract the time scale t„(9) of desorption.
The implicit assumption in the above procedure
is, of course, that the internal readjustment of
the adsorbate during the desorption process is
much faster than the desorptlon process itself.
Note that in addition to the explicit nonlinearity
of the rate equations (2) there is a much stronger
implicit one through the dependence of the initial
and final states in R";"; on the n; 's in (1). The
above calculation can be simplified considerably
after the realization that the He-graphite and
similar systems remain in a quasiequilibrium
during the desorption process' in a temperature
regime where the desorption time is much larger
than the time characterizing bound-state-bound-
state transitions justifying the use of perturbation
theory on (3) to calculate the desorption time as'

/&z]y", (r)! 5(E& -E, +hap)n; n& & ~; n;,

! The fact that the prefactor v changes in the
same direction as the heat of adsorption is re-
ferred to, generally for thermally activated
processes, as a compensation effect and has
been observed in many chemisorbed systems. '
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FIG. 2. Heat of adsorption Q and log~ov vs coverage O

at two temperatures from desorption time t„= v '
&& exp{@/k&T).

t, -' =(~/m, X,)g;P;P-, ~-„'!J d~y;+(r) [BV,(~)

where c is the momentum of a gas particle in the
continuum. For a graphical representation of
our results we use the Frenkel-Arrhenius pa-
rametrization t, = v 'exp[ @/kBT] where Q=kBT'
x[9(lnP)/9T]e is the isosteric heat of adsorption
with P the gas pressure necessary to maintain a
transient coverage at a temperature T.

In Fig. 2 we plot log»v and Q versus 9. Q drops
from a value Q~-e, +2.5kBT at 9=0, where e,/
k B

= -135 K is the lowest-energy state in the bare
surface potential, to Q~c, +2.5 kT at 9=1.5
where ~, is the depth of the He-He interaction
potential. ' This trend simply reflects the fact
that a He atom is more tightly bound to the graph-
ite surface than to a monolayer of helium on
graphite. ' The prefactor drops from v=10" s '
at 6)=0 to v= 10' s ' at T= 12 K and v = 10" s '
at T=18.5 K for 0&1.' The rapid decrease in v

as a monolayer gets completed can be readily
understood from the expression (3) for R;; and
the fact that, according to the lower panel of
Fig. 1, the second bound state is moving out for
0&0 into the region of the second adlayer where
the coupling to the phonons gets very weak. The
overall desorption time gets faster with increas-
ing coverage, e.g. , at T=12 K from g„=1.2x10 '
s at 0=0 to f„=3.3&10 ' s at 0=1.5, and at T
=18.5 K from t„=10 ' s at 0=0 to t„=4.2&10 "s
at 0=1.2.
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log„,(t, )

15 in the surface region is not changed appreciably
by the presence of the adsorbate and in the ab-
sence of strong coupling to collective excitations
in the adsorbate itself.
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FIG. 3. log~ot& vs & for various coverages 0.

Figure 3 shows that the curves of log„v versus
T ' for various coverages 9 indeed converge at
high temperature but do not cross. ' We also
note that the entropy lost by transferring a par-
ticle from the adsorbate to the gas phase rises,
not quite linearly, with Q.

In summary, we have reported a fully micro-
scopic (mean-field theory plus nonlinear rate
equations) calculation of the (phonon mediated)
desorption time in the 'He-graphite system up
to a coverage 0-1.5. A compensation effect is
predicted around monolayer coverage in gas-
solid systems where the phonon density of states
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