
VQLUME 49, NUMBER 9 PHYSICAL REVIEW LETTERS 30 AUGUsr 1982

Approximate Mapping of Two-Dimensional Quantum-Spin Models
on Staggered Eight-Vertex Models

Ad Lagendijk
Natuurkundig Laboratorium der Universiteit van Amsterdam, 1018 XE Amsterdam, The Netherlands

and

Hans De Haedt
Departement Natuurkunde, Universitaire Instellingen Antzverpen, B-2610 Wilrijk, Belgium

(Received 19 April 1982)

Analytic results have been obtained for the thermodynamics of the bvo-dimensional S
= 2 X-Y model using the simplest form of the generalized Trotter formula for the parti-
tion function. The model exhibits a phase transition of unconventional nature. It is
claimed that this is one of the best descriptions given so fax of the critical thermodynam-
ics of the 8 = 2 two-dimensional X-Y model. Central in the present approach is the map-
ping of a family of bvo-dimensional S = 2 models on staggered eight-vertex models having
unconventional weights.
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The critical behavior of two-dimensional (2D)
spin models has been the subject of a number of
recent investigations. Of much current interest
is the planar rotor model, also referred to as the
classical X-Y model, which shows fascinating
critical properties. " Many of the theoretical
tools being used for these classical models like
renormalization-group approaches and high-tern-
perature expansions are much harder to apply
to quantum models. Several rather crude real-
space renormalization-group studies on the 2D
8 = 2 X-Y model have not led to a clear picture. '
These methods do not agree with each other, and
do not agree with the high-T expansions concern-
ing the very existence of a phase transition. A

more promising approach in the understanding of
quantum thermodynamics is the use of path sum-
mations because in these methods quantum models
are mapped on classical models. ' Monte Carl. o
experiments on 1D quantum models of reasonable
size have already been reported. " The inherent
complexity of this l.ine of attack makes it very
difficult to apply this technique to the critical be-
havior of 2D and higher-dimensional quantum
models. In this Letter we want to demonstrate
that the simplest possible approximant for the
partition function of the 2D S =

& X-Y model using
the path-summation method can be solved analyt-
ically.

The basis of the path-summation method is the
Trotter formula,

e A+ B IIm (eA /me B /m
)

m (1)

holding for bounded operators. ' Formula (1) can

easil. y be generalized to more than two operators.
The link with thermodynamics is that one is in-
terested in e, in which P=1/k~T, and in which
X is a sum of operators. In this work we will
write the Hamiltonian X for the S= & 2D quantum
model in its real-space decomposition,

in which I runs over all nearest-neighbor pairs
of spins, and in which X, is the pair interaction.
Single-site interactions are partitioned equally
over the pair interactions. The simple model we
want to discuss in this Letter is the m =1 approx-
imant to the partition function, Z= Tr exp(-P
xQ, ~, ),

Z, = Tr II, exp(- PK, ) .

We will introduce the approximation Z =Z» and

we will refer to it as the independent-pair ap-
proximation (IPA). The IPA conserves all sym-
metries, rotational and translational, which is
very important for the description of phase transi-
tions. In the &D case the IPA does not introduce
spurious phase transitions (compare with the
mean-field approximation). The IPA becomes
exact for high temperatures, and its results re-
main physical down to 0 K. The critical behavior
of the IPA at 0 K cannot be trusted but in contrast
to 1D systems the interesting temperature range
for the critical behavior of many 2D models is
not close to 0 K. In any case the IPA description
of the 2D S = 2 X-Y model is superior to the al-
ready mentioned renormalization-group approach-
es and high-temperature expansions in the tem-
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FIG. l. (a) A small part of a square lattice, in which
the dots represent quantum spins and where the square
around each dot symbolizes the four Ising spins associ-
ated with each quantum spin. (b) A possible configura-
tion for the four Ising spins at site 1 and site 2, and
the vertex representing the horizontal coupling. {c) The
same as (b) but for the vertical coupling between sites
1 and 4.

perature range of interest. We will demonstrate
that the IPA for the 2D S=2 X-F model can be
solved rigorousl. y.

We will now outline the mapping of Z, on the
partition function of a staggered eight-vertex
model. Inserting complete sets in the product
(3) we find

M

Z, = Q g (4, I exp(- PR, )4, „),
{e~] r =i

(4)

4+1 1$

in which M is the number of nearest-neighbor
pairs: M =zN/2, in which z is the coordination
number of the lattice, and N is the number of
spins. In Eq. (4) each C, is an N-spin wave func-
tion. However, K, contains only operators of
two sites, and for that reason 4, and 4, „can
only differ in two of the N-spin wave functions.
A specific site only occurs in z pair interactions.
Consequently for a specific site only z different
wave functions will occur in Eq. (4). From now
on we will. limit ourselves to a square (z = 4) lat-
tice. For this lattice any spin site will have four
spin wave functions associated with it in Eq. (4).
Another way of saying this is that with each
quantum S=2 spin, four Ising spins are associ-
ated. In Fig. 1 we have symbolically depicted
the lattice. The corner points of the square sur-

rounding a lattice point symbol. ize the Ising spins.
So a certain{4, f can be characterized by 4" Ising
spins. To indicate whether a certain Ising spin
is up or down we will draw a line (bond) through
the corner point in question paral. lel to the other
diagonal of the square, and having the same
length as the diagonal. Arrows on that line in-
dicate whether the Ising spin is up or down. The
rules are the following': If a spin at a corner is
pointing up (down), the arrow on the bond through
that corner runs northeast (southeast) or north-
west (southwest). In Fig. 1(b) we have given an
example of an eight Ising-spin configuration for
two neighboring sites: site 1 and site 2. The ver-
tex between site 1 and site 2, which is reproduced
separately in the same figure, can be used to
represent the matrix element

(Z„(1)Z (2)I exp(-PK„„)Zz(1)Z z(2)),

in which Z (1) refers to the o.'th Ising spin on site
1. All the possible matrix elements, or weights,
associated with the interaction between neighbor-
ing sites can be represented by vertices. If we
limit ourselves to interactions with an even num-
ber of up and down Ising spins, only eight differ-
ent vertices with weights ~,H-~, H come into play,
and they are depicted in Fig. 2. The subscript H

refers to horizontal coupling. If we use a vertical
coupling as in Fig. 1(c) the weights are &,v-~, v.
The matrix element being presented by the vertex
in Fig. 1(c) is

and it is clear that for the special example of
Fig. 1 the horizontal and vertical weights are
different: ~»& co». In general the weights for
the vertical coupling are a permutation of the
weights for the horizontal coupling:

12345678:H
12348765:V

We now want to prove that a path through the lat-
tice, that is any set(C, } contributing to Z» can
be presented by a set of horizontal and vertical
couplings, and that any set of vertices corre-
sponds to a set(4, j. The latter is trivial, since

FIG. 2. The eight vertices with their weights.
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this is true by construction, but the former is
nontrivial. To construct a path through the lat-
tice we have to start at a certain lattice site, say
1, and consider its coupling to one of its neigh-
bors, say 2, thus generating

&~ (1)~ (2) l exp(-W, .) )~8(1)~8(2)&

The next time we consider site 1 the first Ising
spin in the matrix element should be & g(1). That
is to say, once a site has been used for the first
time for an interaction there is no freedom any-
more as to what Ising spin to use for the next
three times when this site is being considered.
So after having gone partly through the lattice,
and after having taken into account some pair in-
teractions, one will. encounter situations in which
there is no freedom any more for a certain pair
interaction because both neighbors involved in
this interaction have been considered before in
other pair interactions. If the two Ising spins of
these neighboring sites which have to be treated
first are not nearest neighbors, one could not
insert a vertex between them. This is a nontriv-
ial topological problem on first sight. But an

actual construction of a finite lattice shows that
it is very simple to fulfill the constraints. %e
will indicate a sequence for a 4&&4 lattice with

periodic boundary conditions: The first row con-
tains sites 1,2, 3, 4, and the second row 5,6, 7, 8,
etc. A possible sequence of pair interactions is
(1,2), (1,13), (1,4), (1,5), (2, 14), (2, 3), (2, 6),
(3, 7), (4, 8), (3,4), (3, 15), (4, 16), (5,6), (7, 8),
(5, 9), (6, 10), (7, 11), (6, 7), (8, 12), (5, 8), (9, 12),
(10,11), (13,16), (14,15), (9, 13), (10,14), (9, 10),
(13,14), (11,15), (12,16), (11,12), (15,16).

So we have shomn that the m = 1 2D S =
& model

can be represented by a sixteen-vertex model
having different weights for horizontal and ver-
tical couplings. This corresponds to a staggered
sixteen-vertex model. Many possible sequences
of pair interactions give the same result but we
cannot prove that this holds for all sequences.
On the other hand we cannot exclude this possibil-
ity. This possible ambiguity is well known in
functional integration techniques and has been
discussed by Hubbard. " He suggests the inclu-
sion of the symmetry aspect of possible sequenc-
es, and this is what is effectively done in our ap-
proach. The models we will consider in the fol-
lowing are staggered eight-vertex models because
eight weights vanish by symmetry.

The Hamiltonian we want to discuss is described

by the pair interaction

K(; )
= —J ((7; I3' +V; o )

(5)

if i and j are nearest neighbors. In Eq. (5) v,. is
a Pauli spin operator for the spin at site i, and
H is a magnetic field perpendicular to the plane
of the 2D system. Hamiltonian (5) contains the
2D Heisenberg model and 2DX-F model with a
perpendicular field. The weights for the corre-
sponding staggered eight-vertex model are given
in Tabl. e I. For simpl. icity we have exet.uded
anisotropic X-Y' couplings although they could be
incorporated without problems. The general
staggered eight-vertex model has not been solved
yet, but the X-Y version (that is J~~ = 0) can be
solved exactly because in that case the vertex
weights satisfy the free-fermion condition. " The
result for the m = 1 X-Y model is that the free en-
ergy has a diverging second derivative at the tem-
perature T, defined by sinh(2P, J~) =1. The sec-
ond derivative of the free energy behaves as C
+ In~ T —T, ~

in the neighborhood of the phase tran-
sition. At the phase transition we have an Onsager
type of singularity in the specific heat. The mag-
netization in the z direction and the correspond-
ing susceptibility can be calculated exactly.
There is no spontaneous z magnetization and the
susceptibility remains continuous. Unfortunately
the X-F model with a field in the x direction can-
not be mapped on a model satisfying the free-
fermion condition. Comparison with the high-T
expansion of the quantum X-F model. shows that
the IPA is very good. ' Our free energy differs
by 1% from the free energy in the high-T expan-
sion at the point where the high-T results start
to fail: PJ~ = 0.4 [there is a difference of a factor
of 2 in definition of the coupling constant between
Ref. 3 and us]. The phase transition occurs at
PJ ~= 0.44, a region where the IPA is still very
reliable.

The staggered eight-vertex model. s we have

TABLE I. The eight horizontal vertex weights for
Hamiltonian (5).'

(d&H= e exp
2H ~+11

(d SH
= ~4H = exp(- K11 ) sinhKy

~5H = ~6H = exp(-E11) coshK~
~VH=~SH= 0

'y = 2PH. &11 =P~11, &g=—2P~&
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introduced form an interesting class of model. s.
The "quantum" character of these classical mod-
els lies in their weights. Almost all vertex mod-
els studied so far have weights of the form ~,.
= exp(- P&; ), in which e, is an energy. Our
weights are of a different nature: They are hyper-
bolic functions of the interaction energies. This
has far-reaching consequences as can be seen by
considering the uniform eight-vertex models
with weights ~»-~,H. These model. s do not have
the unphysical retention of correlations at infinite
temperature as some of the conventional models
with weights of the form exp(- Pv; ) have.

We have shown that there exists an approximate
mapping of the 8=& 2DXYZ model, which in-
cludes the Heisenberg and X-l' model. , on a stag-
gered eight-vertex model. This mapping results
as the first approximation in the path-summation
method of Suzuki, Miyashita, and Kuroda. ' The
X-Y version shows a phase transition without
long-range order in the z magnetization, and
without a divergence in the z susceptibility. This
method introduces vertex weights of a different
character from the classical ones. The study
of these models is very interesting in itself.
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Irrational decimation schemes are constructed for functional integrals with the very
interesting feature of preserving several distinct site Hamiltonians into the fixed-point
limit. This method is applied to the quasiperiodicity transition to turbulence in order to
compute the effects of external noise.

PACS numbers: 05.40.+j

In an important paper, Shraiman, Wayne, and Martin determined the effect of noise on the period-
doubling behavior of maps on an interval. In this paper we shall extend their methodology to determine
the role of noise on the recently developed theory for the transition to chaos from quasiperiodic mo-
tion." In order to perform our calculation, however, rather than using only existing renormalization
ideas, we have constructed new decimation schemes that might prove useful in other contexts. Spe-
cifically, we construct irrational decimation schemes which at each level of renormalization produce
several distinct Hamiltonians deployed along the lattice, approaching distinct fixed points. This is in
contradistinction to the usual technique which produces the same Hamiltonian at each site, so that our
technique accommodates dynamics whose critical behavior maintains multiple clusterings.

Let us recall Shraiman s adaption of decimation to the context of iterated maps. To a one-dimen-
sional causal system we add external noise and so consider the stochastic process x„+,——f (x„)+P„,
where P„ is a noise sample drawn from a distribution with density p. Accordingly, P, (x„„lx„)=p(x„„
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