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Exact Time-Dependent Green's Function for the Half-Plane Barrier
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Let G be the time-dependent quantum mechanical propagator for a particle that is free
except for a half-plane barrier with a straight edge. A closed-form exact expression for
g is presented in terms of the Fresnel integral for the case where the initial and final
positions lie in a plane perpendicular to the edge. G' is not expressible as a sum over
classical paths.

PACS numbers: 03.65.Ge, 02.30.+g, 42.10.Hc

The time-dependent Green's function is the
quantity Gg, t;y ) =(n'I exp(-ite jl) ly & and is the
object calculated in the Feynman sum over his-
tories. With itch replaced by appropriate real
parameters it provides a solution for the heat or
the diffusion equation as well as the Schrodinger
equation. It is known in exact form in few cases
and in every one of those (that I know of) reduces
to the form

8'S„(r,t;y) "' 'iS Q, t;y)
~x ~y

expp

where Sa(x', t;y) is the action along a classical
path, satisfying the Euler-Lagrange equations,
starting from y at time 0 and arriving at x at
time t; the (denumerable) sum is over all such
classical paths. ' Moreover, the known examples
are either the free particle or the harmonic oscil-
lator in one form or another. ' It may be worth
emphasizing here that I am discussing the tirne-
dePendent propagator and not the apparently more
tractable object, the energy-dependent Green's
function, related by a Fourier transform; elosed-
form solutions for the latter have been known for
the Coulomb potential for some time' and although
there are signs that the time-dependent propaga-
tor is coming under control it is as yet unknown.

In this article I present an exact, closed-form
(in terms of a Fresnel integral) solution for the
time-dependent propagator for a particle subject
to an infinite half-plane barrier. This problem is
of considerable importance in optics where Som-
merfeld's exact solution' of the time-independent
problem is the starting point for Keller's geomet-
ric diffraction theory. '

My solution bears a great
resemblance to Sommerfeld's, as presented by
Lewis and Boersma, ' suggesting that other exact
solutions known in optics" may also provide
closed formulas for the time-dependent Green's
function for the Schrodinger equation. However,
my derivation of it" did not rely on knowledge of
Sommerfeld's form and by rights should only be
an asymptotic solution (for I'-0) rather than an
exact result. The Fourier transform (t -E) con-
necting the various expressions is done by sta-
tionary phase and I know of no a priori reason for
exactness to obtain on both ends of the approxi-
mation. In fact, the main purpose of Ref. 3.0 is
to justify KeQer's method in geometries that are
not exactly solved.

The geometry is illustrated in Fig. 1. The
third dimension has been dropped and the barrier
is the negative y axis. The initial and final points
are a = (p„9,) and b = fp„8,), respectively. De-
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fine the following quantities:

P P 1(2
ts, =s(8, +S,), st, = (sS, -S )s- s,sm=( i'p' sine„s = i&' sints„

and the function

h(u) =(i))') ' mf exp(ivm)dv.

Let the mass of the particle be ~. Then the exact Green's function is

G(b, t; a) = (4mi St) ' exp[i (p, + p,)'/dN t ](exp(- im')h (-m ) + exp(- in')h (-n)j,

(2)

where the upper (lower) sign corresponds to Dirichlet (Neumann) boundary conditions on the barrier.
The derivation of (3) given in Ref. 10 is entirely irrelevant since it is only asymptotic @-0) to the
first two leading orders [0(1) and 0(+S)]. Instead, having by whatever means gotten (3), we apply H
—iS 8/Bt =- V - iS 9/()t to it, check if that is zero, and also check that the boundary conditions are sat-
isfied. In fact, the two terms in |"individually satisfy Schrodinger s equation as can be verified by
straightforward application of —V' —i S &/&t. The only feature of that tedious exercise that might not be
done by a computer programmed to take derivatives is to notice that the final result of taking those de-
rivatives, namely,

(const)exp[i(p, + p,)'/4t]t '(p, /p, )J ds(Ti —s' —su)ezp(is'+2isu),

with S =1 and u =(p, p, /t)"'sin(d, (for the first term in G), is in fact zero. This is because

s
s ()Q

ds( ,' i —s—'—su)exp(is2+2isu) =
0

GL7 z S
d s ——

ssp (is' + piss))ds 2
(4)

and the contribution at s =~ drops out by the usual regularization procedures, e.g. , giving ~ or m
small imaginary parts. " The satisfying of the boundary conditions is verified by noting that one can
obtain the second term in G from the first by the transformation 8,-3)) —9. (the barrier is at angle
3m/2).

A point af interest in the form (3) is that it is not a sum over classical paths. True, the small-&
asymptotic expansion shows it to consist of direct, reflected, and diffracted rays, a feature exploited
by Keller, ' but this neat division is only possible asymptotically. To see this recall' the large-u asymp-
totic expansion of h,

h (u) -8 (u) —~v "'e""exp(i u')u ' Q a„(iu') ",
n=p

/ay

where e is the step function, a, =1, and a„=(n

—z)a„, for n) 0. When applied to (3) this gives
firstly two 6 functions whose arguments are posi-
tive in the case where there is an unobstructed
direct path from a to b or a reflected path off the
barrier, respectively. The first term from each
asymptotic series is 0(/S) and together they
yield what Keller calls the diffracted ray. The
remaining terms do not correspond to any classi-
cal path even with Keller's generalization of that
notion to diffracted rays. Moreover, the above
expression for h breaks down on the "shadow
boundary" (5 falls on the line aO) and G is given

by half the direct ray plus the "diffraction" por-
tion of the reflected-ray term. It does not seem
useful to me to think of this as a sum over classi-
cal paths in view of the complicated auxiliary pre-
scriptions used (half of one term, a different por-

FIG. 1. The barrier (on which the propagator t" or its
normal derivative vanishes) is the negative y axis and
a and b are the spatial arguments of G.
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tion of the other). It is true, however, that (3)
is a sum of terms individually satisfying the
Schrodinger equation and combined to satisfy the
boundary conditions. Sommerfeld' provided an
elegant rendering of this sum as a generalized
method of images with the basic partial differen-
tial equation defined on a two-sheeted Riemann
surface. (Similar techniques are useful in path
integration; see Ref. I, p. 224).

Sommerfeld's presentation also shows that his
exact half-plane solution is not an isolated result
and in fact it is only one of a large class of exact-
ly solved problems known today, "for example
the wedge (interior or exterior), the cylinder,
the obliquely incident ray on an edge fi.e., not re-
quiring both a and b of (3) to be in a single plane
normal to the knife edge(, or even an infinity of
parallel edges. It is my expectation that many of
these problems will also lead to closed-form so-
lutions for the time-dependent propagator.

As a problem in quantum mechanics I know of
no reason why the half-plane barrier should have
any great intrinsic interest. It is offered here,
firstly, because it adds to the small number of
exact solutions and any exact solution is a kind of
laboratory on which ideas can be tested (e.g. ,
exactness of the sum over classical paths) as
well as a starting point for perturbations. Sec-
ondly, I expect this exact solution to lead to
others, some of which may have greater intrinsic
physical relevance. Finally, it should be ob-
served that t- it conve-rts (3) to a solution of the
heat equation for which the kind of boundary-
value problem formulated may be a realistic mod-
el of a physical situation.

'For further discussion with references, see L. S.
Schulman, Techniques and Applications of Path Integra-
tion {Wiley, New York, 1981), in particular Sec. 6,
appendix.

~The solved time-dependent forced harmonic oscilla-
tor has of course been quite useful in many problems
and the solved free particle may be moving on rather
complicated manifolds (in particular group manifolds
of Lie groups). In addition the method of images may
be used to build up further interesting exact solutions.
See Ref. 1.
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