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Critical Properties for Gelation: A Kinetic Approach
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The critical behavior of the gelation of polymers is studied as a kinetic process in
which only surface interactions between polymers are assumed. It is found that gelation
occurs when the exponent w, which characterizes the effective surface area, is greater
than 3, and that the exponent 7, which characterizes the size distribution at the gel point,

is related to w by 7= w+32.

PACS numbers: 82.35.+t, 05.70.Jk, 64.70.Ew

In this Letter, we discuss the gelation transi-
tion in polymerization by considering polymeriza-
tion as a time-dependent process represented by
the kinetic equation'™®

¢y=t 21 Kycicj—c, LK,c 1
iti=k J=1
which describes the evolution in the concentration
of k-mers, given by c,(t), due to random reac~
tions between pairs of polymers. In (1) it is as-
sumed that the rate that ;-mers and j-mers react
to form (i+j)-mers is given by K ;;¢; ¢; , where
K;; is a transition matrix describing the colli-
sion process. There is no breakup processes,
so that the reaction continues until gelation is
complete (a single infinite polymer).

From the chemical-kinetic view that the prob-
ability that two chemical groups react is propor-
tional to the product of their concentrations, it
follows that K ;; is proportional to the number of
ways an i-mer and a j-mer can combine. In the
Flory-Stockmayer (FS) theory'® of the step poly-
merization of f functional units, K;; is given by
[(f=2)i+2][(f-2)j+2], for in this theory an i-
mer always has [(f - 2)i + 2] free ends as a con-
sequence of the assumptions that intramolecular
reactions cannot occur, and that all free ends are
equally reactive. With the above expression for
K,;, (1) can be solved explicitly [for certain ini-
tial conditions ¢, (0)] and it is found that at a cer-
tain time, ¢{,, there occurs a transition which
manifests itself through a violation of the conser-
vation of total mass, M,=2kc,, of sol particles
(finite-size clusters). The M,(¢) is constant be-
fore the gel point, #,, and decreases pasti,, as
the sol loses mass to the gel (infinite-size clus-
ter).

While the properties of the gelation transition

are of interest as an example of critical-point
behavior, the FS theory is not expected to be ac-
curate about the gel point, because the underly-
ing assumptions become unrealistic when the
polymers are large.

An alternative to the chemical-kinetic theory
of polymerization is the lattice-percolation mod-
el, where polymers are “grown” by randomly
placing bonds between atoms on an appropriate
lattice.” Since such a model allows intramolec-
ular reaction and also takes steric hindrance into
account, it is believed that the properties about
the gel point are thus more accurately described
than by the FS theory. The predictions of the
critical behavior of these two theories are dif-
ferent; consider, for example, the exponent 7,
which describes the large-% behavior of ¢, pre-
cisely at the gel point such that

C,(t,)~constxk™" (2)

asymptotically as k—~«. The FS theory gives 7
=%, independent of dimensionality d, while the
percolation studies (using series expansions or
computer simulations) give 7=2.06 (d =2) and
2.20 @=3).7

In this Letter, we discuss a kinetic theory of
gelation which allows the gel-point behavior to
be effectively modeled. We choose an expression
for K;; which goes beyond the restrictions of the
FS theory, and for which we are able to determine
some asymptotic properties of post-gel solutions,
such as (2).

The dependence of K ;; on the cluster sizes i
and j is of crucial importance for the £ and ¢ de-
pendence of the size distribution.!'*® For the
model K;; ~1, ¢, (¢) decays exponentially for all
t= 0 (no gelation); for K;; ~i+j, the distribution
¢, (t) approaches the form (2) (with w=%) at in-
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finite time*®; and for K,; ~ij, as in the FS the-
ory, gelation occurs within a finite time. Here
we consider models where gelation occurs in a
finite time. We choose K;; =s;s;, where s;
equals the number of effectively reactive sites
on an i-mer. In the FS theory, s; =(f-2)i+2 is
proportional to the volume of an i-mer (for large
i). To take into account the geometry of a poly-
mer, and to allow for intramolecular reactions,
we expect s, to be proportional to the effective
surface area of a cluster. Thus, assuming s, to
have an asymptotic behavior of the form

s, ~k¥ (3)
as k-, then we expect w to lie in the range
1-1/d<w<1, (4)

the lower limit reflecting the surface area of a
compact solid in d dimensions, and the upper
limit reflecting the FS limit of complete reac-
tivity (equivalent to choosing a Bethe lattice in
percolation studies).

For this model, existence and uniqueness of
solutions to the initial value problem have been
discussed by McLeod,’ Leyvraz and Tschudi,’
and White,' but no explicit solutions are known
(other than for w=0 and 1). Here we consider a
special solution of the form

pB)=c, @ INL+b(E-2,)]"t t=t,) (5)

in analogy with the case w=1, where the post-
gelation solution for monodisperse initial con-
ditions is exactly of this form.*® The question

is then: Under what conditions are such solutions
possible, and can one determine the 2 dependence
of ¢,? To that end the Ansatz (5) is inserted into
(1), yielding a recursion relation for c, (t.),
which has to be solved under the restrictions

2okc, (t,)=M,(0)=1; b=3]kYc,(¢,). (6)
For the generating functions

g)=27c,@.)e™, flx)=2c,(t k™, (1)

where g(x) ~M(¢,)+x +o(x) for small x, we de-
duce from the recursion relation f(x)=b - [b?

- 2bg(x)]/2 and g(0)=M (t,)=b/2, implying f(x)
~b — (= 2bx)"2 for small x. This branch-point
singularity yields an asymptotic behavior

()~ (B/2m) /27327 (k~ ). (8)

The coefficient b varies between 0.27 and 1 for
w between 0.5 and 1, as follows from numerically
solving the recursion relation for the c,(f,). The
parameter ¢, in (5), depending on w and on the
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initial conditions at £ =0, cannot be determined
within the present method.

For a general post-gelation solution, we have
also determined the asymptotic behavior of c,,.
Assuming only that M, depends upon time, we
obtain the result (8) with b replaced by M ,(¢,)."

Comparison of (8) and (2) yields

T=w+3 (9)
and with the help of (4) we have the inequalities
2-1/d<T<3. (10)

Thus, given the geometric exponent w character-
izing the effective surface area of a large poly-
mer, we have calculated the nonclassical values
of the exponent 7, its classical value being
reached in the FS theory (w=1). Recent results
on lattice percolation show that clusters are
compact past the percolation point,'? implying w
=1-1/d. Estimates for 7 obtained from (9) using
this value are slightly below the lattice calcula-
tions for all d, as can be seen from Table I. We
make the following comments:

(1) The solution (8) is only compatible with a
finite M,(t,) for w>3. Therefore, the kinetic
equation only allows solutions with a time-de-
pendent mass (that is, with gelation) if w>3.

This confirms a conjecture of Leyvraz and
Tschudi that gelation cannot occur for w<3. For
w=3 we expect gelation to occur at infinite time.

(2) The geometric exponent w is a coarse-
grained measure for the outer surface of poly-
mers, and represents the number of reactive
sites available for bonding between lavge clusters.
It should not be identified with the fine-grained
external perimeter which penetrates the whole
cluster'? and is therefore proportional to the
volume & of the cluster (implying w=1)

(3) For general post-gelation solutions we can
show the asymptotic behavior (8), but we cannot

TABLE I. Values of 7.

d FS Lattice ? Eq. (9)
2 2.5 2.06 2

3 2.5 2.20 2.17
4 2.5 2.30 2.25
5 2.5 2.39 2.30
6 2.5 2.50 2.33
w 2.5 2.5 2.5

2Values deduced from Stauffer, Ref. 7.
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determine M (t,) [which replaces b in (8)]. The
special solution, (5), is of importance because
it demonstrates that there exists at least one
solution with a finite nonvanishing M, (¢,).

(4) The foregoing discussion concerned the %
dependence of ¢, (¢.). Since att=t, no gel is yet
present, this 2 dependence will not depend on the
assumed interaction between sol and gel. How-
ever, that interaction strongly affects the time
dependence of the post-gel solution. As in Stock-
mayer’s classical theory of gelation®? this in-
teraction is absent here, because the gel is not
present in the loss term of our kinetic equation,
(1). One may modify the kinetic equation past
the gel point by adding sol-gel interaction terms
(as has been done in the classical theory to ob-
tain different post-gel solutions, such as
Flory’s®3). Such modifications may possibly
change critical exponents concerned with the
time dependence past the gel point.

(5) In our model, the post-gel behavior has the
following properties: (a) The scaling postulate
c,)~c, (@t )(t -1,|k°) is not valid; (b) the ex-
ponent 8, which determines the growth rate of
the gel fraction close to the gel point, has the
classical value 1; and (c) the exponents v and ¢
are undefined. The exponent g is defined by the
relation between gel growth, 1 -M,(¢), and the
extent of reaction, p(¢), such that 1 =M, ~[p
—p(tc)]ﬁ. In our model, 1-p is proportional to
the number of available reactive sites, 2;s,c,(t),
so that close to the gel point ¢t —¢,~[p —p(¢,)],
since p(t, ") is finite on account of (5) and (8).
Then, since M,(¢,*) is finite [on account of (5)],
B has the value 1. The exponents y and o are
related to the second and third moments of c, (¢),’
which are infinite for all ¢ ={_,. These post-gel
results will most likely change if a sol-gel inter-
action is allowed. If such an interaction leads to
scaling, there remains the question of whether
the behavior belongs to the universality class of
the classical theory, of the percolation models,
or perhaps of an intermediate class as found by
Herrman, Landau, and Stauffer for a kinetic
simulation of polymerization on a lattice.'®

(6) Equations (5) and (8) comprise new results
for the coagulation equation (1), which has been
extensively studied in the context of coagulation,™*
antibody-antigen interaction,* ** and galactic
clustering, as well as polymerization. In all
the studies, solutions to (1) have been found only
for K;; =A+B(i+7)+Cij.** Perhaps the new solu-
tion given here will be useful in some of these

other problems concerning clustering.

After submission of this manuscript a paper by
Leyvraz and Tschudi'” appeared which confirms
some of our conclusions.
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