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Propagating Domain Walls in CsCoBr3
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Neutron scattering from the quasi one-dimensional Ising-like antiferromagnet Cs CoBr3
has revealed that a well-defined inelastic peak occurs at elevated temperatures. The
peak is associated with the Villain mode arising from the propagation of thermally acti-
vated domain walls.

PACS numbers: 75.40.-s, 05.50.+q, 75.10.-b, 75.30.Ds

The spin dynamics of the antiferromagnetic Is-
ing-like chain is dominated by the motion of do-
main walls, or solitons. In 1975 Villain predict-
ed that the presence of thermally excited domain
walls should lead to a low-frequency component
of the longitudinal neutron scattering, bounded by
a peak whose frequency obeys a sinusoidal disper-
sion law. In recent experiments of Yoshizawa
et al.' on the quasi one-dimensional material
CsCoCl„a non-Lorentzian inelastic shoulder ap-
peared at elevated temperatures, but no peaks
corresponding to a Villain mode were observed.
In this Letter we report on neutron-scattering ex-
periments on the one-dimensional antiferromag-
net C s CoBr„ in which a well-defined mode has
been observed directly for the first time.

The S = ~ Ising-like antiferromagnetic chain
has an exchange Hamiltonian

H =2J Q;JS,'S;+,'+e[S;"S;+,"+S;~S;~~~]J

=H' +H"

To lowest order the ground state is the Neel

state where adjacent spins are aligned in opposite
directions. The first excited states at ~ = 2J are
superpositions of states with antiferromagnetic
domains bounded by domain walls. The trans-
verse term 8"', which couples a state with a do-
main wall at the site n to states with walls at n
+ 2 (Fig. 1) is responsible for the propagation of
the walls.

In neutron scattering the spin-wave response
appearing at + = 2J is due to transitions from the
ground state to the band of excited states; the do-
main-wall or soliton response appearing near ~
= 0 arises from transitions within the band of ex-
cited states. The soliton scattering has appreci-
able intensity only when the excited states are
thermally populated.

Using perturbation theory to first order in &,
Ishimura and Shiba (IS)' have calculated the T =0
spin-wave response. When this approach is ex-
tended to finite temperatures' we obtain in addi-
tion the soliton response. To first order in & for
~ &u~ &~@, where Q is the wave vector along the
chain direction in units of the inverse distance
between spins, the response is given by

F (P)I, (2P &J')e ~2 cosh[//2 eot(Q) (&uo' —& )'~ ]
s (Q/2)( -- )"

~ „»cosh' /2 cot(Q) (~o' —~')"']
(do —(d )

eos(Q)
slnh P/2

~

. (Q))((do
—K )

le@i
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where the Villain-mode frequency is =4&J
&& sin(Q), EP) is a function of temperature showing
a characteristic thermal activation, and I,g) is
the modified Bessel function. For I ~j & ~~,
S""(Q, Id) =S"(Q, w) =0.

The result for S"gives the same spectral re-
sponse as that first derived by Villain using an-

!other method. Both the longitudinal and trans-
verse responses have a square-root singularity
at the cutoff frequency ~@. As shown below, this
mode has been observed for the first time in
CsCoBr, .

C s C oBr, has a hexagonal structure, c = 6.261 A,
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a =7.445 A i, isomorphous to that of CsCoCt, with
chains of magnetic Co" i 'two" ions (two per unit cell)
along the & axis. Above th the ree-dimensional
ordering temperature (T„,=28.3 K) the Co"

CsCoBr was
spins lie along the c axis. ' The sample of

s OBr3 was prepared from a stoic hiometric
ratio of 48.69 g CsBr and 50 Cn g oBr,. The single
crystal 17 mm in diameter and 40
ali nea signed so that its (h, O, l) plane lay in the scatter-

is spec rometer at
the NRU reactor, Chalk River. A n

ec e rom a (111) Si monochromator and col-
limated to 0.6 was scattered b the
th h 07

!
ug a . collimator for analysis by a (111)

jeff i 2I wu ~ V~ f~~if)2(sin2+S" (Q, v) + (1+cos'p)S"" (Q

where V ' i
self-a

is an effective volume corr t f
se -absorption of neutrons, f(ff) is the magnetic
form factor, and Q =(ff ~ z)c/2.

Th e ow- requencyhe strategy for observing the lo -f
magne ic scattering was as follows. Constant-~
scans were performed at various wave t

a emperature of 5 K, where the scattering is
nuc ear incoherent scat-dominated by the elastic nucl

tering NIS) centered at &u =0 plus a f t- t
ac ground extending to higher frequencies. The

intensit of the
t

i y o e NIS at a given wave vector
aken as a measure of V-' Th

c or~was
e same scan was

repeated at higher temperatures (35 50

) and he smoothed 5-K background was sub-
es, , and 80

tracted from the data. The strong intensity of the
NIS at w =0 re stricted the measurements of the
magnetic scattg cattering to frequencies greater th
~ =0.15 THz.

ea er an

Figure 2 shows data at 50 K «r two
tors. The

or o wave vec-
e data show well-defined peaks which

inter ret a
a s w iehwe

p e as the Villain modes arising f throm cr-
y excited propagating domain walls. Th

back r
s. e

1.2 0
ground subtracted is typicall =45y — counts at

( . , 0, 0.7) and '=90 counts at (1.2, 0, 0.5). The

FIG. 2. Observed scattering above background at
Q = 7t /2 (left) and Q = 77|/10 (r' ht

T e monitor M is a measurement of the number
of incident neutrons. Th h

' e e-e t eoretical curves are de-
scribed in the text. Inset: 8 tt 'ng

vs temperature for = x 2
ca ering above b'ng background

Q =, and frequency of 0.7 TH
e solid line is a ui

~ Zo

guide to the eye and shows that the
scattering is thermally activated.

Si analyzer operating at fixed scatter d- tere -neutron

W
gy &. For most scans & was 3 TH~ J z 0

hen the scattering vector I(.
' mak

with the & c ax
I(.
' ma es an angle p

i e z~c axis, the magnetic scatterin inten-
sity is given by

ering inten-
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solid lines represent the theoretical line
for ~=1.62 THz & =0

e ica ine shapes
z, & =0.137. The parameters are

independently determined from s in-
uremen s, using an extended version of th IS

y. The theoretical lines include V, '
f(K), monitor, polarization factor an

i a aussian resolution function of full
width at half maximum 0.18 THz. The
the zone boune oundary (1.2, 0,0.5) occurs at 0.89
+0.07 THz. At (0.3 0 1.5. ', where the response
is 8 0 transver98' sverse, a peak is observed at th

e frequency in agreement with Eq. (2).
The inset ofof Fig. 2 shows the variation of the

intensity above background with tern
results sho

n wi emperature. The

vated a
u s s ow that the scattering is th lerma ly acti-

as expected for domain walls.
As seen in Fi . 2

much b

'g. , the observed scattering
ch broader than predicted b theor

ing ls

of collisio
e a roadening can be expected the on e basis

al effect
isions between domain walls. Ths. e collision-

ects are of course included in the exact cal-
culations of IS of S"(Q &d ffor rings of 10 spins.
These show a broadened distr b t fi u ion o scattering
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FIG. 3. Dispersion of the Villain mode. The solid
line shows the Villain prediction, ~= 4eJ sin(Q), for
the e and J which describe the spin-wave response in
Cs CoBr3.

in qualitative agreement with the present meas-
urements. Results at Q =&/2 (not presented here)
show that at 35 K the peak is sharper while at 80
K only a squared-off shoulder remains; this con-
firms that the collisional effects increase with
temperature.

Yoshizawa et al.' did not observe a well-def ined
peak in the low-frequency response of CsCoC1, .
The conditions of the present experiment were
probably more favorable because the incoherent
scattering in CsCoBr, is less than that of
CsCoCl, and the single crystal used was of ex-
ceptionally high quality. It is also possible that
collisional effects were somewhat greater in the
chloride.

Figure 3 shows the dispersion of the peak ob-
served in the neutron scattering. The theoretical
line is that for the Villain mode with 4 and & as
above. The frequency of the mode is consistent
with the expected sin(Q) dispersion. As discussed
by Villain, ' one does not expect the theory to be

valid in the region i Q —~ l«~„ the inverse cor-
relation length. At 50 K ~, = 0.14~ so that colli-
sional effects are important but clearly not suffi-
cient to damp out the peak.

A preliminary estimate of the ratio of the inten-
sity of the transverse to longitudinal response is
in reasonable agreement with theory. A complete
description of these experiments and the new the-
oretical calculations will be presented elsewhere.

The results obtained show that at elevated tem-
peratures a well-defined peak occurs in the low-
frequency longitudinal and transverse spin re-
sponse of the Ising-like antiferromagnet CsCoBr, .
From its dispersion, spectral line shape, and
temperature dependence. the peak can be identi-
fied as arising from the Villain mode due to ther-
mally activated propagating domain walls.
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