
VOLUME 49, +UMBER 8 PHYSICAL RKVIK%" LETTERS

Monte Carlo Simulation of Quantum Spin Systems

25 AUGUST I/82

Sudip Chakravarty and Douglas B. Stein
Physics Department, State University of Ne~ York at Stony Brook, Stony Brook, New Pork 11794

{Beceived 29 April 1982)

A Monte Carlo method applicable to a class of noncommutirlg spin variables is devel-
oped. The technique relies on a stochastic procedure which simulates the dominant vac-
uum-to-vacuum graphs of quantum many-body theory. Computational speed is only weak-
ly dependent on the dimensionality of the system and is fast enough to handle large lat-
tices. This method is tested on the S = 2 ferromagnetic Heisenberg model in one, two,
and three dimensions and on the S = y XY model in one dimension where exact results are
known.

PACS numbers: 75.10.Jm

Monte Carlo simulation of quantum systems is
an important and rapidly growing area of re-
search' which is directed towards developing a
nonperturbative technique to calculate the prop-
erties of interacting quantum systems. Recently'
a method based on a direct space-imaginary-
time representation has been used to treat a num-
ber of problems involving fermionic and bosonic
degrees of freedom in one dimension (1D) with
good results. In this paper we discuss an exact
method first mentioned by Handscomb' to treat
the 8 = —, ferromagnetic Heisenberg model. We
interpret this method, we believe for the first
time, as a simulation of dominant vacuum-to-
vacuum processes and extend this so as to be
applicable to a class of noncommuting spin vari-
ables. The method is then tested on the 8 = 2 fer-
romagnetic Heisenberg model. in one, two, and
three dimensions. This serves to clarify the
method, to check its speed, and also to verify
the quantitative aspects. It is then applied to S
= 2 XY model in one dimension and compared with
exact results. At this point we would like to em-
phasize that by its very nature the method is only
weakly dependent on the dimensionality of the
system, this being one of its advantages.

An important ingredient in any Monte Carlo
simulation is an exhaustive enumeration of states.
In Handscomb's method the states are represent-
ed by a countably infinite set of ordered integers;
later we shall see that this is also the space of
all vacuum-to-vacuum graphs of many-body
theory. This unconventional enumeration of
states is the novelty of this method. Consider
now a Hamiltonian II which may be expressed as
the sum

Nb

a= +a, ,

where Kb is large but finite. Then the expecta-

tion value of an operator 0 may be expressed as

(o)= g g o(c„)~(c„),
n=o&C )

where

«(C„)=[(-0)"/~ t1 tr(&;, '' '&,„)
alld

O(C„)=tr(OI,. " I,. )/tr(I, . "h,. ).

In these equations (C„}denotes any sequence of
ordered integers i„.. . ,i„ in the range 1 (i -N,
and Z denotes the partition function. For m(C„)
to define a proper distribution we must have
n(C„)&0 for all C„and+„Qc ) n(C„)&~. A

naive application of this method to antiferromag-
nets is not possible since v(C„)&0.' However,
for the nearest-neighbor 8 = 2 XY model on bi-
partite lattices, to be discussed below, the sign
of the coupling is irrelevant.

A Markov chain is formulated as follows. Given
a sequence(C„) a forward direction is chosen,
with probability f„, whereas one tries to insert
an index selected uniformly and randomly from
the set 1- i -N, so as to make a transition (C„)
—(C„ij; the decision to make this move depends
on the ratio m(c„i)/m(C„) in a standard way. Sim-
ilarly if a backward direction is selected with
probability (1-f„), an attempt is made to make
the transition fi,c„g-$C„,). Exploiting the
cyclic invariance of trace, we permute the se-
quence if a backward move was rejected to im-
prove the sampling rate. If the transition prob-
ability is constructed by multiplying m(c„) by an
arbitrary set of positive numbers XyX2

then the equation'

f„=1 —nh.„f„
has to be satisfied to reach the desired limit dis-
tribution. A convenient parametrization off 's
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FIG. 1. An example of vacuum-to-vacuum graphs for
Heisenberg model.

can be used to determine ~'s which satisfy the
above rel. ation. In order to illustrate the method
let us consider the S = 2 ferromagnetic Heisen-
berg model. In this rather special case the
equivalence between 8, S, and +(2P» —1), where
P» is the permutation operator, can be exploited
to rewrite the Hamiltonian as a sum of trans-
position operators (we consider for simpl. icity
onl. y the nearest-neighbor case). A string of
operators h, h, then simpl. y induces a permu-
tation on a standard set (1,2, 3, . . . ,N), where N
is the number of spins on the lattice. For ex-
ample, the permutation induced by a "time"-
ordered sequence of transpositions P56P,g,j',+»
shown in Fig. 1(a) can be factored into a cycle of
length 3, a cycl.e of length 2, and N —5 trivial
cycles of length 1. The nontrivial cycl.es are
shown in Fig. 1(b). Each sequence can be graph-
ically represented in this way. The processes
are time ordered within a cycle but not between
cycl.es. The trace of a string of operators is 2"
where x =n~ is the total number of cycles in-

n

eluding the trivial. ones. Trace ratios such as
w(C„i)/m(C„) are either 2 or 2 depending on

whether a cycle was broken up into two parts or
two cycles were joined together in the process.
Thus the Monte Carlo method simulates the vacu-
um fluctuations of the system by joining or split-
ting apart these cycles, thus carrying out a walk

along the paths connecting dominant processes.
The average of an operator is an average over
these processes. This procedure enumerates all.
the graphs only for the 8 = 2 isotropic Heisenberg
model. This becomes evident in trying to simu-
late the 8 = 2 XY model which we discuss below.
In this case

e=-z Q (s,. 's,. +s,.'s,.-),
&i J'}

where the sign of J is irrelevant for bipartite
l.attices and (ij) denotes a nearest-neighbor pair.
This Hamiltonian can be written as

where N, is the number of bonds on the l, attice.
For example, let us say that h, =S,'S . The
trace of all odd-order terms in PJ in the expan-
sion of the exponential vanishes, and so it is
clear that two indices at a time must be inserted
or del. eted. However, if Handscomb's original
method is used, i.e. , (C„f-(C„ijj or gi,i,C„
—(C„g, not all. the graphs are generated. We
can generate all the graphs only if i and j are in-
serted at two random locations in the sequence
or deleted from two random l.ocations. The dif-
ference equation to be satisfied now is as follows:

f„„=1 —(n+ 1)(n+ 2)x„„z„„f„.
Since the h's are no l.onger equivalent to permuta-
tion operators a new method is needed to cal.cu-
late the trace ratios. If a directed bond such as
S,'S, is represented by an arrow whose head is
on site 1, then a sequence C„ is a collection of
graphs consisting of arrows whose tails and heads
alternate at a site as time increases, and the
number of arrows going into a site is equal to the
number going out. ' Each of these directed or-
dered graphs can be collapsed so that they are
no longer directed or time ordered. This ex-
hibits the connectedness of the lattice by means
of bare graphs. The trace of a string of oper-
ators is 2" "~, where n, is the total number of
sites in the bare graphs. However, for any
linked graph there is a corresponding graph ob-
tained by reversing all the arrows. Their traces
are the same and both should be included. The
Monte Carlo method must sample them equally,
but for large graphs this requires unacceptably
long sampl. ing times. The solution to this dif-
ficulty is to partition the Hamiltonian into bonds
such as h, =(S,'S, +S,'S, ). A linked graph of
zero trace is then recognized by the fact that no
possible assignments of arrows can satisfy the
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TABLE I. Susceptibility for S=- 2 Heinsenberg model
in 1D.

TABLE II. Energy and specific heat for S= -2 XF
model in 10.

kT /4 Pade Energy
u7'/1 z1 zxact MC

Specific heat
Exact MC

1.0
0.6
0.4
0.2

1.869 1.867+ 0.004 1.869+ 0.004 1.869+ 0.004
2.324 2.299+ 0.007 2.324+ 0.008 2.328+ 0.007
2.835 2.694 + 0.008 2.841 + 0.012 2.841 + 0.010
4.172 3.202+ 0.008 4.199+0.024 4.210+ 0.022

2,5
1.5
1.0
0.5
0.35

—0.1924
—0.3010
—0.4058
—0.5589
—0.6000

—0.192+ 0.001
—0.299+ 0.002
—0.402 + 0.003
—0.558+ 0.001
—0.590+ 0.010

0.071
0.163
0.263
0.307
0.229

0.071 + 0.001
0.166+ 0.002
0.265+ 0.004
0.305 + 0.028
0.233+ 0.010

rules mentioned earlier. The trace of a string of
operators is 2" "~ 2"&, where n„ is again the num-
ber of sites in the collapsed bare graphs and n„
the number of linked parts. More details will be
dis cussed elsewhere. '

For any model it is easy to show that the in-
ternal energy (except for a constant) satisfies
E/&I, 1&1 = —(n)Mc/P1 J1N» i.e. , the Monte Carlo
average of the length of the sequences gives the
internal energy. The specific heat can be com-
puted from C„/Nk~ = ((g') ~c —(n) Mc' —(n) Mc), a
result that is easil. y proved. The reduced sus-
ceptibility for the S= 2 Heisenberg model is given
above the transition temperature (if there is one)
by

compared with the exact results for 40 spins.
Our numbers are different from those in Ref. 2

since we use a grand canonical ensemble. The
results for the S=& XY model in higher dimen-
sions will be discussed elsewhere. ' In Fig. 2 we
show the susceptibility of the two-dimensional
Heisenberg model. This is to be compared with
the results in 3D shown in Fig. 3 and the data
presented for 1D in Tabl. e I. The dependence of
susceptibility on the lattice size in 2D is similar
to that of 1D and different from that in 3D. This
leads us to believe that these results are con-
sistent with the general belief that a transition in
2D is unl. ikely. In Fig. 4 the results for internal.
energy and specific heat are plotted for the 3D

This sum runs over the squares of the lengths of
all. the cycles including the trivial ones.

The comparison of susceptibility for the S =
&

Heisenberg model with Pade results' in 1D is
shown in Table I. In Table II the internal energy
and specific heat for the S = ~ XY model in 1D are
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FIG. 2. Susceptibility for 2D Heisenberg model.

kT/J

FIG. 3. Susceptibility for 3D Heisenberg model.
HTEMP corresponds to a truncated high-temperature
series (Ref. 8).
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provided sufficient care is taken to make all
graphs accessible. Interesting problems' in-
volving quenched or annealed disorder in the XY'

model are now possible and will be considered
in the near future.

One of us (S.C.) is a recipient of an Alfred P.
Sloan Foundation fellowship.
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FIG. 4. Results for 3D Heisenberg model. Crosses
and diamonds denote specific heat. The lines are drawn
to guide the eyes.

S= & Heisenberg model. SW is the spin-wave
theory containing terms up to T and is plotted
from the results quoted in Ref. 8. HTEMP cor-
responds to a truncated eight-term high-tempera-
ture series. '

The number of iterations was between 6&&10

and 5&&10', depending on the individual case. The
statistical' errors as determined by calculating
the standard deviation of block averages were
genera/, ly kept to less than 1%. As always, er-
rors computed by this procedure are not strict
bounds.

Our emphasis here has been on developing a
general method and estimating its speed and its
potential. We have shown that Handscomb's
method, neglected for nearly twenty years, is
very powerful and lends itself to generalizations,
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