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Chaos, Quantum Recurrences, and Anderson Localization
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A periodically kicked quantum rotator is related to the Anderson problem of conduction
in a one-dimensional disordered lattice. Classically the second model is always chaotic,
while the first is chaotic for some values of the parameters. With use of the Anderson-
model result that all states are localized, it is concluded that the local quasienergy spec-
trum of the rotator problem is discrete and that its wave function is almost periodic in
time. This allows one to understand on physical grounds some numerical results recent-
ly obtained in the context of the rotator problem.

PACS numbers: 03.65.Bz, 05.30.-d, 71.55.Jv

In this note we show that certain quantum sys-
tems showing chaotic behavior in the classical
limit and the system of electrons in a disordered
lattice are closely related.

That the motion of nonlinear classical systems
can display random characteristics is well
known. ' The solutions of the equations, although
they may statistically be definite, are stochastic
and behave as if they contain a random number
generator. This may occur even though the
equations themselves are deterministic and even
simple. Indeed, the pseudorandom numbers used
in computation are generated in just this way.

The classical equations are often approximations
to a more fundamental wave equation, e.g. , the
Schrodinger equation, in the eikonal sense. The
issue of whether the wave equation is as chaotic
as its classical limit was formulated clearly by
Chirikov et al. ' Casati et aS.' had in an earlier
paper studied the simplest example known, that
of the periodically kicked quantum rotator. Al.-
though some early numerical results claimed the
opposite, ' it is now believed' that for nearly all
the values of the parameters the quantum motion

will resemble the classical motion only during a
finite interval of time after which quantum effects
become important. These quantum effects gen-
erally prevent stochasticity. ' This is at first
surprising since even the simplest quantum
problem has a probabilistic interpretation. Ref-
erence 2 gives an instructive but heuristic dis-
cussion of the fundamental difference between the
classical and quantum-mechanical motions. More
recently, Hogg and Huberman' noted that if a
certain condition is met [namely that the local
density of guasienergy states is discrete (see be-
low)] the motion is quasiperiodic in time. Their
numerical studies indicated that this condition is
satisfied at least for certain parameter values.
As a consequence of quasiperiodicity the quantum
system recurs to almost the same state repeated-
ly whereas the classical system grows more and
more complicated in time.

A second problem of great interest is that of
electrical conduction in systems with random
scattering potentials. A classical particle in such
a potential makes a random walk, and eventually
diffuses a distance whose square is proportional
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to the time. It was first realized by Anderson"
that a quantum particle does not necessarily be-
have in this way, but, depending on dimension
and energy, may eternally remain in the vicinity
of its initial position. In particular, in one di-
mension, it is known' that any degree of random-
ness localizes all the electronic states.

To show the connection, we consider the prob-
lem of a quantum rotator periodically kicked,"
and produce a mapping in which the (integer)
angular momentum of the rotator corresponds
to a lattice site in the conduction problem. The
pseudorandom number generator in the cl.assical
rotator problem reappears in the Anderson prob-
lem as a pseudorandom potential. The solution
of the quantum problem is, however, dramatical-
ly different from the classical sot.ution, since
according to Anderson the random walk is cut off
and the wave functions are localized. In this way
we give a physical understanding of the results
obtained in the context of the quantum rotator
model. Conversely, from the rotator results we
can conclude that the time-dependent wave func-
tion of an electron in an Anderson lattice is al-
most periodic, implying a time-persistent prob-
ability of finding an electron in the vicinity of its
initial position.

The Schrodinger equation of the rotator is

&hay(8, t)/st =gII+kV(8+(t)} q(6, t).

Here H = —(h'/2I)&'/& 8' and L (t) =+„5(t—nT, ).
We take T, as the unit of time and h/T, as the
unit of energy, and define dimensionless param-
eters v=hT, /f, k=k/h, and K=kr, the last of
which is classical. . We consider a general po-
tential, V(8), satisfying V(6) = V(- 8) = V(6+ 2v).
The equations for p„and 8„, the classical. angular
momentum and angle just after the nth kick, are
P„„-P„=—kV'(8„„), 8„„—6„=KP„/k, with
V'=dV/d8. If K is large enough, for many' func-
tions V, e.g. , V=cos61, V' generates random
numbers for successive n values. The momen-
tum then makes a random walk and the energy in-
creases as p„'= k'(V")n.

We reformulate (1) to make contact with Ander-
son theory. Since (1) is invariant under t- t+1,
the quasienergy + characterizes the eigenstates,
which are orthogonal' for distinct ~'s. The states
then have the form ( =e ' 'u(8, t) where u(t)
=u(t+1). It suffices to study u, , the values of u

just after (before) a jump. The relationship u,
=e *""' 'u holds. We denote u=(u, +u )/2. Then
u =u /(1 —tU) =u, /(1+ tU), where U(6) = —tan[k
x V(6)/2] . Another relation may be obtained by

integrating between kicks to find

u (6) = fdyg exp[tm(6 —p)]exp(tE )u, (cp)/2v

with F. = &u —wm'/2. We eliminate u, in favor of
u, introduce the Fourier coefficients u„of u, and
find the mth Fourier coefficient of (2). The re-
sult may be written

Tu +QU„u, „=eu
r&0

(3)

where U„=U „ is the Fourier coefficient of U(6),
T =tan(E /2), and e = —U, . This is the equation
for a one-dimensional Anderson model, a tight-
binding model with hopping elements U„ to the
rth neighbor.

In the Anderson model, T is an externally giv-
en random number so that there is "diagonal"
disorder. Then we know that the eigenstates of
(3) are localized about some site and decay ex-
ponentially away from that site with a character-
istic length y (e). Eigenstates with nearly identi-
cal energies are, however, generally localized
at centers which are far apart. Conversely, two
eigenstates localized at centers close compared
with y will typically have eigenenergies sepa-
rated by a finite-energy spacing 4E which is
roughly y times the bandwidth in the absence of
disorder. It is also well. established" that, be-
cause of these properties, the local density of
states (i.e. , as weighted by the absolute square
of the wave function, and defined explicitly be-
low) is discrete and, at a given site n, it consists
of about y

' 6-function peaks at certain energies
The main assumption of the present paper,

supported by numerical evidence given below, is
that the sequence & of relevance for the quantum
dynamical problem, although not satisfying the
most stringent mathematical tests of random-
ness, "is nevertheless sufficiently so that the
above statements apply. The eigenvalues e„(v)
are monotonic functions of ~ which determine the
quasienergy spectrum by &„(v)= —U, . This spec-
trum has the same properties as the energy spec-
trum. In particular, the local density of quasi-
energy states is discrete. It is the local rather
than the total density of states that determines
much of the behavior of the system, including
that discussed here.

To study the time evolution of the system we
integrate (1) in time. ' We denote the sth wave
function in the angular momentum representation
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by a„'(t), which satisfies

~„'(&+1)=P J „(k)exp(- in'~/2)a„'(t), (4)

where J„(k)= (2z) 'Jd 8e xp[ir 8—ik V(8)] . Any in-
itial condition, specified by s, may be used, but
it is convenient to require a„'(0+)=II„, . We de-
fine a„'(t)=[a„'(t+)+a„'(t-)]/2. It is found
a„'(~)=++„'(a)5(&u —&u„), where A„'(n) =u„(n)
&&u, *(a). The local density of quasienergy states
at n is a„". The discreteness follows from the
localized character of the u's; i.e., because of
the exponential decay of the u 's, A„' is large for
only a few values of a. It then follows that a„'(t)
is almost periodic. "

We have numerically solved Eq. (4) for a(t) and
taken its time Fourier transform, to obtain the

A. 's and the + 's. In Fig. 1 we show the trans-
form of Rea„'(f) for several n's in the nearest-
neighbor (U = ~ cos8- ~) case. It can be seen that

is independent of n and that the amplitude de-
pends strongl. y on n. We have chosen K fairly
small so that y is quite large and +„ is approxi-
mately known. In Fig. 2 we show In[i ReA„'(0)1]
and compare it with —yn, where y is the value
determined from localization theory and given
below. There is qualitative agreement.

An issue raised in Refs. 2 and 3 is whether
there are distinct types of quantum behavior de-
pending on the values of k and v. Clearly, there
is localization (and thus near periodicity) for all
k if T is random. The transient and recurrence
time scales do depend on k, of course, since y
does. The randomness of 7.

" depends only on 7'.
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We do not attempt a discussion of the interesting
question of the characterization of the random-
ness as a function of the value and number the-
oretic character of ~, as it is unknown how ran-
dom the sequence T has to be for Anderson lo-
calization to take place. We mention only two

cases, v/4m rational or irrational (excluding the
Liouville numbers).

For 7/4m irrational, T is apparentl. y pseudo-
random. E mod2m is uniforml. y distributed and

its power spectrum is numerical. ly broadband
ruling out pair correl. ations. Then, T has a
Cauchy distribution, 1/(T'+ 1)II . This distribu-
tion defines a well studied and simple case known

as the Ll.oyd model. ." In the nearest-neighbor
case, several exact results are known, e.g. , the
inverse localization length y(e, z) is7 "

2a coshy = [(e —z)'+ 1]' '+ [(e+ «)'+ 1]' '.
The potential in the rotator model correspond-

ing to this U is V(8) = (2/k)arctan(a cos8 —e). This
has a rather unpleasant appearance but is ana-
lytically simpler than the choice V= cos6 studied
previously in the rotator model. . Note, too, that

for ~ =0 and t( small. , V(8)= cos8. The numerical
results are qual. itatively similar for either choice
of V. We have checked that the Lyapunov expo-
nent of the classical map associated with this po-
tential is positive for appropriate values of the
parameters, i.e. , the map is chaotic.

The agreement between the value of y given by
Eq. (5) and the one obtained from the numerical
solution of Eq. (4) supports our conjecture that
the sequence T„ is sufficiently random for Ander-
son localization to occur.

In the rotator, y enters through the kernel J.
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FIG. 1. The Fourier transform of fT„~ for s =0 and

m=0, 3,4, for &=0.25, v=30, and a=0. The arrows
indicate the expected quasienergy spectrum in the limit
of g 0.

FIG. 2. The real part of A„o(e) for ~~/2w =0.059,
for g =1.4 and v =30. The straight 1,ine is the envelope
calculated from Eq. (5).
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For the nearest-neighbor case we find J„~e &~",

where y is given by (5). That the range of J gives
the localization length is not transparent, but it
numerically works in the cases we have studied.
This allows the conjecture that the localization
length for more complicated Anderson-Lloyd
models can be determined analytically by study-
ing J. It can in any case be studied numerically
by this method.

If w/4w is a rational P/q, then T =T „is peri-
odic and the eigenstates of (2) are band states.
This is called a quantum resonance' in the ro-
tator context. For example, take ~ = 4m. Then
T =tan(E /2)= —U(n), u =u,e ™,and o is any
real number. The eigenstates are

u(e, t) ~g„exp[im(9 —n) i2~m—'t+iE„ t ]

for Oct&1. Note that u is not normalizable. In-
deed, for f -0 u becomes proportional to 5(9 - o.).
Thus, although the eigenstates of the quantum
rotator are bounded in 6I, they are unbounded in
momentum, and possess a continuous spectrum.
However, if q is very large, the single band
which would exist for T constant is split into q
bands each of exceedingly small width, which can
be estimated to vanish exponentially for large q,
and as a practical matter, the states might as
well be localized.

There are many related problems of interest.
One is the generalization of Eq. (1) to d dimen-
sions. Another is the choice 8 = (7/i)&/&6, which
gives (3) with T =T =tan[(E —mr)/2]. This ap-
pears to be a case of a periodic potential incom-
mensurate (or commensurate) with the lattice.
If so, a theorem" would indicate that all states
are extended, in disagreement with previous
studies. " Certainly, T is not a good random
number generator as in this case its power spec-
trum has many discrete peaks. However, we
succeeded in solving this model exactly" and
found that, if 7/4w is irrational, all the states
are localized consistent with the Anderson-Lloyd
model. Thus, T produces the same effects as
a truly random sequence as far as localization is
concerned. As T is surely not less random than
T, this strongly suggests that the latter se-
quence leads to localization as well.

In summary, there is a connection between a
quantum problem whose classical limit is chaotic
and the problem of conduction in a random poten-
tial. We have shown that one may apply the known
results of one of these problems to the elucida-
tion of the other. In particular, that the energy
is bounded in the rotator and that there is no dif-

fusion on the disordered lattice have a common
explanation, namely, for fixed energy or quasi-
energy, Anderson localization (in space or angu-
lar momentum, respectively), or equivalently,
near periodicity in the time representation. It
may be quite general that problems with external
randomness can be studied by introducing a
pseudorandom number generator which depends
on a convenient parameter.
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