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Thermodynamics of the Kondo Model
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The exact thermodynamic equations of the Kondo model are solved in the scaling regime
and the impurity magnetization, susceptibility, and specific-heat curves are obtained as
functions of the temperature for different magnetic fields. This is done for the case
where the impurity has spin 2, 1 and 2 .
PACS numbers: 75.20.Hr

The Kondo Hamiltonian describes magnetic im-
purities dissolved at very low concentrations in a
nonmagnetic metal and interacting with the con-
duction electrons via spin exchange interaction.
It has attracted a great deal of interest, especial-
ly from theorists. Fundamental properties such
as scaling and crossover behavior from a weak-
coupling to a strong-coupling regime as the tem-
perature is lowered were shown a decade ago. '
The zero-field susceptibility as a function of tem-
perature for the impurity-spin S=-,' case was
determined more recently by the use of the re-
nor malization-group technique. "

In the present Letter we use the recent diago-
nalization ' of the Hamiltonian and the resulting
formulation of the thermodynamics' ' to explicit-
ly determine various physical quantities, such as
specific heat, susceptibility, and magnetization.

These quantities are obtained as functions of tem-
perature for various values of magnetic field.
We consider the cases of the impurity spin S= -„
1, and 2, and make a comparison of the theory
with some of the large body of experimental data
available.

The thermodynamics will be studied in the scal-
ing regime. H, T «D, where D=N, /L is the den-
sity of the electrons (which also serves as a cut-
off). The physics in this regime is completely
parametrized by a dynamically generated scale, '
which in our cutoff scheme" takes the form T,
=Dexp(-~/c) where c =2J/(1- 4 Z'). The scaling
regime is best studied by taking the limit (D- ~,
c-0, T, fixed) of the theory. The results thus
obtained are universal and independent of the par-
ticular defining scheme. " The impurity free en-
ergy E' is given for the spin-S case by

I" ' = -(kB T/2v) J d & sech [ t —ln( T,/T) ] in[1 + q,, s( g, H /T) ],
where g» is the 2Sth member of the set of func-
tions {q„j, n = 1, 2, . . . , satisfying the following
set of coupled integral equations:

lng, = -2e + G ln(1 + q,), (2a)

in'„= G ln(l + q„,) + G ln(1 + q„„), n ~ 2, (2b)

with the boundary condition"

[n] ln(1 + q„+,) —[n + 1]1n(1 + r(„) - 2 ~/k p T,

(2c)

where G and [n] are integral operators with
kernels (2v) 'sech& and & '(n&/2)[(nv/2)'+ f'] ',
respectively.

The coupling constant 4 and the cutoff D enter
the thermodynamics only through the combination
defining T, which is the strong-coupling scale
(in the spin--,' ease) and is related to the conven-

!tionally defined Kondo temperature TK by the
ratio W' = TK /T, = 1.290 268. . . .'

We would like to remark, however, that to dis-
cuss the problem of spin impurities with S -1
dissolved in a metal, a preferable approach is
provided by the SU(2S+1) generalization" of the
basic SU(2) Kondo model, rather than the use of
higher spin representation. The SU(n) version
of the Kondo model is also solvable"'" and its
thermodynamics will be studied in the future.

Equation (2) seems almost linear in ln(1+ q„).
We can bring out this fact and simplify numerical
computation by introducing a new set of functions
)„defined by

q„= (sinh'nx, /sinh'x, ) exp(2$„) —1

in terms of which the thermodynamic equations
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~„=G(~„„+~„,)+b„, n -2,
lim f[n] $„,—[n+1] &„]=0,

(4b)

(4c)

where x, = ptI/kBT and

1+(1-e ' '")
(sinh'nx, /sinh2x, —1)

The functions $„are monotomically decreasing
and have the limits

$„(-~)= in[sinh(n + 1)x,/sinh nx, ],
(„(~)=0.

As n increases, the remainder term b„ tends
rapidly to zero. If the remainder terms are
neglected for n -N we can solve Eq. (4b) in a
closed form as

$„=[1]$~, .
The error in this approximation can be shown to
be of order of 2exp[-(N —1) Ix, I] when x, g0 and

of the order of 2/N' when x, =0. Thus by taking
N to be suitably large we can achieve the desired
accuracy. When xo=0, this convergence is very
slow, and hence additional effort is necessary to
carry out the calculation.

The calculation was greatly expedited by con-
verting the integral equations (4) into a set of ma-

become

$, = —,
' in[1 + 2 cosh x, exp(-2e ) exp(2 G$, ) ], (4a)

trix equations and the integral operators G and

[n] into matrix operators which were computed
ahead of time and stored. The resulting matrix
equations were iterated until the functions t„(&,
x,) were determined to the desired accuracy.
The free energy was determined from Eq. (1) and
numerically differentiated to yield the suscepti-
bility, specific heat, and magnetization. The ac-
curacy of these are estimated to be better than
lok when H = 0, and a. few percent when H w 0.
The resulting graphs are displayed in Figs. 1
through 4.

In Fig. 1 we have plotted k& Ty/(gp, , )' for zero
field and S= —,', 1, and 2 as a function of tempera-
ture. This is a measure of the effective spin of
the impurity. At low temperature (strong-coup-
ling regime) half a unit of the impurity spin is
screened by the electrons. " For spin--,' impurity,
this means that its magnetic moment is. complete-
ly screened. As the temperature is raised we
cross over to the asymptotic-freedom regime
where the free result S(S+1)/3 is logarithmical-
ly approached. The comparison of our result
with those of the renormalization-group calcula-
tion' shows very good agreement.

In Fig. 2 we have plotted the specific heat as a
function of temperature at zero field and for 8

1, and 2. The impurity makes its strongest
contributions to specific heat around T = TK. As
the spin of the impurity increases, its contribu-
tion decreases. This is a manifestation of an
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FIG 1 kBT X/|, gag) vs log(p{T/Ty') for $ = 2 ~ 1~

and 2 impurities. The points are renormalization-
group calculation results from Ref. 2.
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FIG. 2. C, /k& vs log&pT/TK for S = 2, 1, and 2 im-
purities. The points are the renormalization-group
calculation results from Ref. 16.
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asymptotic-freedom phenomenon in the spin S
with the higher-spin impurity acting more and
more like a free spin.

We have also plotted the result of a recent re-
normalization-group calculation" on the graph.
This calculation was done on the generalized
resonance-level model which provides a long-
time approximation to the Kondo model. We find
the agreement to be good, though not as good as
that of the renormalization-group calculation'
of y performed on the Kondo model itself and

given in Fig. 1.
In Fig. 3 we have plotted the specific heat of the

S= —,
' impurity for various values of the magnetic

field. Though the curves tend to approach the
free-spin Schottky anomaly C„//k B =x,~ sech'x,
(xo= pR/k BT) with increasing magnetic field, still,
even at the value of ~/k, T K =9, they differ sig-
nificantly, manifesting the logarithmic nature of
the corrections in the asymptotic regime.

We have also plotted experimental measure-
ment of the specific-heat of (La, Ce)Al, ." The
Ce ground state in this material has an effective
spin of —,', according to magnetic susceptibility
measurements which suggest that the cubic crys-
tal field splits the Ce' J = 2 multiplet into an ex-
cited-state quartet and a ground-state doublet,
with a splitting of -150 K." We find the material
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to be characterized by TK =0.20~ 0.02 K, which
fits well the different measurements. " This is
the only parameter which needs to be determined.
In addition, we are given g= —", . The agreement
between theory and experiment is good, for both
zero and nonzero fields.

In Fig. 4, we plot the impurity magnetization as
a. function of pB/k ~T for S= —,

' and for various
values of the magnetic field. At high tempera-
ture or high field, the magnetization approaches
the free-spin value M/'= ptanh(~/k, T) very
slowly, with logarithmic corrections characteris-
tic of asymptotic freedom. The scales of the cor-
rections' in temperature and field are, respective-
ly, TK =1.290368. . . T, and T„=(~/e)'/'T, .

The experimental data plotted in Fig. 4 have
been gleaned from Felsche, Winzer, and Minne-
grode" for the magnetization of (La, Ce)Al„with
TK =0.20 K. While there is qualitative agreement
with the theoretical curves, there are significant
quantitative deviations, possibly due to a Van
Vleck contribution from the mixing of the ground
state with the excited state 150 K above the
ground state. " If we ignore the effect of conduc-
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FIG. 3. The specific heat C„/kz vs loggpT/TK for
S = ~ and magnetic field p,H/k& TK = 0.0, 4.76, and 9.05.
For (I.a, Ce)A12 (TK= 0.20), this corresponds to H = 0,
20, and 38 kG. The points are experimental results
from Ref. 17. The dashed curve gives the fr ee-spin
specific heat (Schottke anomaly) for II = 38 kG.
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FIG. 4. The magnetization M'/g pR as a function of
(pH/kg T), for values of the magnetic field pH/kg TK
= 0.238, 0.476, 1.19, and 2.38. For (I a, Ce)AI~ (TK

0 20 and g 7 ) this corresponds to H = 1, 2, 5, and

10 kG. The points are experimental results from ref.
20. The dashed curve gives the free-spin magnetiza-
tion. The saturation value of M'/gp& is 0.5. The ar-
rows show the Van Vleck corrections to magnetization
which are independent of temperature and are constant
over each curve.
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tion electrons, we can estimate the Van Vleck
contribution to the magnetization to be -0.003 p, ,/
kG. In Fig. 4, we indicate with an arrow the ap-
propriate temperature-independent Van Vleck
contribution for each magnetic field.

In conclusion, we have been able to extract the
full thermodynamics of the model and confront it
with experiment. We have found agreement which
is far better than one might have anticipated,
given the simplified nature of the model. There
is clearly a need for a new round of experiments
to determine over what ranges of temperatures,
fields, concentrations, and materials the Kondo
effect dominates. Perhaps even more important,
it should now be possible to explore a number of
interesting properties of dilute alloys based on
accurate measurements of dePartures from Kondo

behavior.
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