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The finite-size scaling of I isher and Barber is extended to infinitely coordinated sys-
tems. Near T and for a large number of elements 2V, a critical quantity A. behaves as
[T —T, ( f(N/N, ) with N, -(T —T, [ . An argument gives v*=vM d„where v&& is
the mean-field coherence-length exponent and d the upper critical dimensionality of the
corresponding short-range system. This is checked on spin systems at T ~ 0 and on the
Ising-XFquantum spin system in a transverse field at T =0 for which calculations are
reported.
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An infinitely coordinated system is a system of
A elements each of which is coupled to all others
with a strength which does not depend on the posi-
tion and nature of the interacting elements. Such
systems, which are particularly simple, have
been widely studied. In some cases their thermo-
dynamical properties can be derived analytically, "
so that they provide good examples to illustrate
the general theory of phase transitions. In the
thermodynamic limit (N —~) such systems may
present a true phase transition. This transition,
which can be often studied exactly, is also cor-
rectly described by a mean-field approach which
becomes adequate because of the long-range na-
ture of the interactions. This explains why they
have often been introduced as a first "mean-field
like" model of real d-dimensional short-range
systems. ' However, when N is large but not in-
finite no true transition exists; but for systems
which present for N- ~ a second-order phase
transition there is still a critical scaling of the
thermodynamical quantities with N, which de-
pends on the nature of the system: for instance,
Kittel and Shore' found analytically that at the
critical temperature the magnetization goes to
zero as N ' ' for Heisenberg as well as for Ising
infinitely coordinated spin- —, systems. They
were already surprised by so slow a decay of
the critical magnetization which did not come out
very simply from their calculations.

In this Letter we would like to extend the finite-
size scaling hypothesis of Fisher and Barber4 to
these systems. As a result of the infinite-range
nature of the interactions the concepts of "dimen-
sionality" as well as "length" have lost their
meaning. The coherence length t must be re-
placed by a more general quantity, independent
of the dimensionality, a "coherence number" N,
which is supposed to diverge at the transition,

in the infinite system, as

where v* is a given exponent depending on the
considered system but independent of dimension-
ality. Consider a given critical quantity A which,
in the infinite system, behaves near T, as

(2)

a is the mean-field exponent for the singularity
of A at the critical point. The scaling hypothesis
is simply extended by assuming the existence of
a. regular function E,(x), such that, near T, and
for large N, A can be written as

(3)

We suppose that E, (x) - const when x - ~ such
that (2) is recovered. When x -0, we suppose
that E,(x) -x "~, with &u, = -a/v* in order that A
would be regular at T, for large but finite N.
The direct consequence is that at T = T, one has

l

It is thus sufficient to know the exponent v*, as
well as the mean-field exponents of the system,
to know how the thermodynamical quantities scale
with size at criticality.

v* can be a simple conjecture based on two
assumptions. The corresponding short-r ange
system with dimensionality d =d, where d, is
the upper critical dimensionality behaves with
mean-f ield behavior. The fir st assumption is
that the scaling theory, as developed by Fisher
and Barber, would apply to this short-range sys-
tem, with a. scaling form similar to Eq. (3) with

N, —
$ & where & is the coherence length diverging

at T, with the mean-field exponent v~. , (-(T
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—T, ) '». The second assumption is that both
systems, the infinitely coordinated system with
N elements and the corresponding short-range
system at d =d, with size L-N~"~, would have
the same scaling exponents. It follows that

V+ = VMFd (5)

As a direct consequence the exponents of the
large-N behavior of all quantities of the infinitely
coordinated system at criticality are related to
d, . For example, for the magnetization, one has

m — N"m with (u = -P»/v»d, .
I'= T

In several systems, such as the O(n) vector mod-
el, v» = PMq =-,' so that the formula reduces sim-
ply to (u = -1/d, .

Before discussing some examples, we must be
more precise concerning the above conjecture.
It has been shown that the first assumption is not
true for the short-range spherical model for
which the scaling form is not so simple as Eq.
(3).' At d =d„ the fluctuations play some role in
the short-range system. Even if they do not
change the mean-field exponents, they introduce
some logarithmic terms in the usual scaling [L/$
is replaced by (L/$)(lnL) "]. However, it could
be expected that the fluctuations vanish complete-
ly in the uniform infinitely coordinated limit so
that the logarithmic term would disappear. At
this stage, this is only an assumption and our
conjecture must be checked on examples before
being trusted.

The conjecture is verified for Ising as well as
for Heisenberg spin systems as shown by the re-
sult of the calculation by Kittel and Shore. ' For
the corresponding short-range system the transi-
tion is driven by thermal fluctuations, so that the
system behaves "classically. " The upper critical
dimensionality is thus d, =4 leading to m -N ' '
at T = T, for the corresponding infinitely coordi-
nated models (without any logarithmic term).
This is already a good check, but to show the
generality of these considerations, we have per-
formed some numerical calculations on other
systems for which the upper critical dimension-
ality is different from 4.

I et us report now the results of calculations
done on the infinitely coordinated version of the
quantum Ising-XF model in a transverse field at
T = 0. Such a system has received a peculiar
interest in the short-range case and has been
exactly solved in one dimension. ' It is well
known that in the anisotropic ease and in d di-

mensions such a system develops at T = 0 a phase
transition in field equivalent to the transition in
temperature of the (d + 1) -dimensional classical
Ising system. ' The gap G between the ground
state and the first excited state is proportional
to the inverse of the coherence length in the extra
dimensionality for the (8+1)-dimensional equiva-
lent. It results that the dynamical exponent z
(which tells how the gap scales with length L at
the critical field: G-L ') is exactly equal to l.
Also, from this equivalence, it follows that the
upper critical dimensionality is reduced by one
so that d, =3 in the anisotropic case. The fully
symmetric XY model is very peculiar since this
equivalence does not hold. The exponent z is
equal to 2 instead and it has been suggested that
the system would be equivalent to a (6+2)-dimen-
sional classical model so that the upper critical
dimensionality would be d, = 2 in the symmetric
case. '

We have considered the following spin-S quan-
tum Hamiltonian:

P (s,."s,"+&s,.'s, ) -hp, .s,.'1

& j
(7)

=p,. s,", K"=P,. (s, )'. (9)

This form permits a better use of the symme-
tries. In the thermodynamic limit the K terms
become irrelevent and it appears that the lowest
states belong to the maximum eigenvalue J=NS
of the total spin so that the study of (8) for iV = ~
can be replaced by the study of

a = -(I/2J)(J" +yH) -hZ'. (10)

This peculiar simple form which involves a uni-
que, but very large, spin of size J=NS is well
known as the I ipkin model in nuclear physics. '
This form (10) can be used in the case S= —,

' even
fox finite N since the K's are then simple con-
stants. However, for S&-,' we must consider the
gener al for m (8).

for o - y -1. y w1 corresponds to the anisotropic
case while @=1corresponds to the isotropic case.
The 1/N prefactor is essential to insure the con-
vergence of the ground-state energy per spin in
the thermodynamic limit where the system devel-
ops a mean-field transition in the ground state
for h =h, =1. Equation (7) can be transformed
into

H = —(],/2NS)(J* +yJ' —K" —yK' j -h J' (8)

with
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m =0, G„=[(h —y)(h —1)]' ' for h &1,

so that their corresponding critical exponents
usually denoted as P and s are

(12)

P=-,' for a.ll y;
s= —,

' for yc1, s =1 for @=1.
(13)

Typical finite-N results are shown in Fig. 1
in the S= ~ Ising case (y=o) where m(h) and G(h)
have been plotted for N=20, 60, 100, and com-
pared with expressions (12) (dashed curves). We
have determined the asymptotic large-X behavior

"m

ex

FIG. 1. Finite-size results (%=20, 60, 100) for the
magnetization and the gap of the infinite ranged Ising
model in a transverse field.

We have defined the magnetization m in the
ground state as being given by

m'=(NS) -'
(0~ Z"'~ O).

We have calculated m as well as the gap G be-
tween the ground state and the first excited state
for finite sizes up to N = 150, 70, 8, respectively,
for S= —,', 1, 2 in the general case @el. The iso-
tropic case @=1can be entirely treated analytical-
ly for S= ~.'

The mean-field and random-phase approxima-
tion expressions" of m and G are given by

numerically and we have found for all y g1

m —m -N ', G —exp(-aN) for h &I;
-N ~', G-N 'i' for h =1;

m-N ', G —G -X ' for h&1.

Moreover we have precisely verified that both m

and G verify the scaling form (3) [i.e., we have
been able to determine E„(x) and Fa(x)] with

In particular we did not detect any logarithmic
term. The exponent 3 for G at critical field
seems to be independent of S as shown by further
calculations for S = 1, 2 which will be reported
elsewhere. "

In the fully isotr opic case y = 1, a simple ana-
lytical treatment" gives

G —G -X ' everywhere,

m —nz -+ 'for 8&1,
-N 'i' fo h -1.

The scaling forms (3) are also verified with

(17)

When comparing our results for m with those ob-
tained by Kittel and Shore' for the transitions of
spin systems in temperature we observe that,
for y ~1, we recover exactly the same scaling
properties below, as well as above, the transi-
tion. This shows that the ordered, as well as the
disordered, phase is the same in both cases (is
described by the same trivial fixed point). How-

ever, we find different exponents at the critical
point. The exponent ~ = -3 is characteristic of
quantum fluctuations while the exponent ~
of Kittel and Shore is characteristic of classical
thermal fluctuations. For yg1, we expect the
same kind of quantum-classical crossover phenom
enon as in the short-range case" but with dif-
ferent exponents. In the (h, T) plane, the ordered
and disordered phases are separated by a crit-
ical line h, (T) starting at h, = 1, T=0 and ending
at h = 0, T = T, . At all points of this line the
asymptotical decay of the magnetization is classi-
cal, i.e. , m-N ', except just ath, =1, T=O
where it is quantum, i.e., m-N ' '. At a very
small temperature on the critical line we can de-
fine a crossover number N* such that G-kT
-(N*) ~. For Ã&N* (N*-kT ') the system
seems to behave quantally, i.e., m -N '~', while
for N &N* it finally behaves classically, i.e. ,m-N-"
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The main results for v* obtained for two quan-
tum systems [Eqs. (15) and (17)] for which d, is
equal respectively to 3 and to 2, together with the
old results for classical spin systems' for which
d, =4, fully confirm the consequences of the main
assumption presented in this Letter and given in
Eq. (5) where ~MF is equal to —,

' for the systems
studied here.

In this Letter we have given a simple argument
relating the critical sealing with W in infinitely
coordinated systems with the upper critical di-
mensionality of the corresponding short-range
system. This argument has been checked here
in three different eases. More details and fur-
ther checks will be reported elsewhere, "in par-
ticular in the case of a quantum infinitely coordi-
nated version of the Ising model in a complex
field, the so-called Lee-Yang problem (for
which" d, =6). It would be interesting also to
extend the arguments to disordered systems
such as spin-glass' or systems with a random
field. "

Another consequence of formula (6) is that it
provides a new way to determine the upper criti-
cal dimensionality d, of a given system from the
size scaling at criticality of the corresponding
infinitely coordinated model.
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