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Theory of the Crossover in the Lovv-Frequency Dynamics
of an Incommensurate System, Hg3 sAsF6
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The dynamic structure factor of a thr ee-dimensional crystal, with an interpenetrating
set of atomic chains which form one-dimensional fluids, is studied. At high frequencies
there are two lorgitudinal acoustic mddes arising from the separate motion of the lattice
and Quid. At low frequencies there is one combined propagating longitudinal acoustic
mode and a diffusive excitation due to particle motion. The crossover between these re-
gions is predicted to occur at a frequency —MHz in Hg3 ~AsF6.

PACS numbers: 63.10.+a, 62.65.+k, 62.80.+f

In this Letter we study the dynamical modes of
a three-dimensional (3D) crystal with an inter-
penetrating set of atomic chains which form one-
dimensional fluids. Hg, ~AsF, at T &120 K is
such a compound with a body-centered-tetragonal
(bct) AsF, lattice and nonintersecting Hg chains
in the ab planes. ' A neutron investigation' found
two propagating longitudinal acoustic (LA) modes
with different velocities associated with the sep-
arate motion of the Hg chains and the AsF, lattice
down to the lowest attainable frequency (-10
GHz). This raises an interesting question since
in the true long-wavel. ength limit one expects only
one propagating LA mode associated with a com-
bined motion of the Hg, ~AsF, sample. The ques-
tion then, which has not been dealt with previous-
ly, is how the two separate LA modes evolve at
lower frequencies to give a single combined LA
mode.

The Hg chains form strongly correlated 1-D

!

fluids with an average nearest-neighbor separa-

tion (2.67 A) which is incommensurate with the
lattice parameter of the AsF, lattice (7.53 A).
This leads to a very weak coupling of the motion
of the Hg atoms along the chains and the AsF,
lattice. The structure factor S(q, &u) is defined
as

~(q, ~) = f „d«' ' ( p( q, t)p(-q, 0))

with the density operator

p(q, t) = exp(il. t)Q exp( —iqX„,). .

I. denotes the Liouville operator and the vector
q lies along a chain direction, x. The sum i runs,
for p. = a, over all Hg sites which pertain to
chains along the x direction and, for p, = b, over
the remaining AsF, and Hg positions. If we ig-
nore for the moment the interaction between the
a and b subsystems then 8 decomposes into two

parts; the b part has the usual form for a 3-D
l.attice, while the a part has the form'

—21V.k~ Tq'll. "' (q, ~)/m.
a t [~2 g 2(q) +f1 (1)

(q +)j2+ [+ll (2)
(q +)]2 (2)

where the self-energy II= Il"'+iII"', and N, and
m. are the number and mass of the a ions. 0, '/
q' is proportional to the inverse of the static
structure factor and in the limit q- 0 determines
the sound velocity of the a chains, v, ', while
II, (q, ~) = -iy, q' a.s (q, ~) -0. The existence of a
well-defined propagating mode at long wave-
lengths is a consequence of the conservation of
the total momentum of the a chains. ' In this form
S has two propagating LA modes in the whole fre-

!quency range.
We now consider the effect of the coupling be-

tween the a and b subsystems. Because of the
incommensurability there is no overlap along the
x direction between the positions of the quasi-
Bragg peaks of the o chains and the reciprocal
lattice vectors of the b lattice, G, . However, we
find that there are other coupling mechanisms.
It is convenient to introduce a matrix notation and
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write

S(q, (u) = 212, T Imp X„,(q, (u)/(u,

q=4

2.6 4.2

where the indices (p, , v) take the values a and b

and the response matrix y satisfies'

X(q, (u) = —q'm '[cu2 —02(q) —~ALII(q, (u)] 'N, (4)

with the matrices

3
U

V)

I I

.6 'l.

1. 1.8 2.6

1,4

(m. '

( o

o ) q=.5

and N„=M, rn, '. M, denotes the total mass of
subsystem b while m, is an effective ionic mass
related to the in-phase motion of the AsF, ions
with ionic mass ~, and total mass M, and the Hg
ions of the b subsystem with total mass M, , rn,
=(m, 'M, +m, 'M. )/M, . The frequency matrix
0'(q) is related by (4) to the inverse static sus-
ceptibility matrix y '(q). To avoid unnecessary
complications we neglect the off-diagonal terms
in y '(q), and as q-o,

n„„2(q)=v„2q2=N„y„, '(q =0)m, 'q'.

The only effect of these off-diagonal terms, which
are proportional to q', is to change slightly the
sound velocities and they can be safely neglected
for the case of Hg, ~AsF, .'

The intersystem interaction gives a finite con-
tribution to II as (q, ~)- 0 in contrast to the van-
ishing terms from intrasystem interactions as
discussed above. We can represent then

II (q = 0, &u - 0) = M 'iy,

with M„=N„~„and ~ =&&, +~„. The self-energy

!
y can be calculated by examining the force equa-

q=. 3

.2 .6

FIG. 1. The calculated dynamic structure factor
S(q, ~). At frequencies ~ ~ y the two peaks are due to
the separate LA modes of the Hg chains (upper) and
As pe lattice (lower). At low frequencies the peak at
finite co is from the combined LA mode and the central
peak from the particle diffusion mode. The third mode
due to the relaxation of relative linear momentum has
very little weight in S(q, ~) at small q. The wave vec-
tor q is given in units y/v, .

tion for each subsystem in the presence of inter-
system interactions. The nonzero terms come
from two sources. One is due to the direct over-
l.ap of the static structure factors of the two sys-
tems. Such an overlap arises here because of
the fluid character of the a chains which gives a
small but finite value for S, (q'=G, , O). A much
larger term (by a factor -10) arises from a dy-
namic resonance process. The existence of points
of degeneracy in both energy and momentum of
the modes of the a and b subsystems allows the
interchange of energy and momentum in the long-
wavel. ength limit between the subsystems. It
gives a form

(8)

where the sum n runs over the modes of subsystem b with frequencies 0, (k) while V„(k) is related to
the potential generated by these modes along the a chains. This potential originates from the Coulomb
interaction between the ions. ' A detailed discussion will be given in a subsequent paper. Using this
potential and the measured values' for 02 we obtain an estimated value y = 1.4 MHz. ' In the limit (q,
&u)- 0 we obtain

E

2k2TN, N, yq2[(m, —m, )+2+m, v, 'q' —m„v, 'q']'
(~2 v 2q2)2(~2 v 2q2)2+ (z2 v 22)q2+2 2yt

where v '=(M /M)v '+(M, /M)v„'. In Fig. 1 we plot S(q, ~).
At low frequencies (&u «y) there are three modes. One is a propagating combined sound mode with

velocity v and a damping ~q2. The second mode is a particle diffusion mode with a~= 2q va va /
v 'y. ' A third mode is a purely relaxational mode with &u„= iy+0(q'), whic-h is due to the relaxation
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3

2 3

qv, /y

by intrinsic thermal fluctuations" and in this
case we find that the intrinsic coupl. ing discussed
above dominates.

In conclusion we have examined the low-fre-
quency modes of a 1D fluid interpenetrating a 3D
l.attice ~ We predict a crossover at low frequencies
from two propagating LA modes to one combined
sound mode and two relaxational modes. Experi-
ments to test the predictions of our theory would
be most welcome.
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FIG. 2. A contour plot of S(q, ~) showing the behav-
ior in the crossover regime. The peak due to the lower
LA mode terminates at a = 1.2y. The higher LA mode
continues to be well defined at all frequencies but its
velocity changes from v, at high frequencies to v, —the
combined sound-wave velocity. The structure at a&v, q
as (q, ~)-0 is due to the particle diffusion mode.

of the relative linear momentum of the subsys-
tems.

As the frequency is raised the sound mode con-
tinues to be wel. l. defined and evol. ves into the
higher sound mode with &=v, q. The two relaxa-
tional modes disappear and a new sound mode
with co=v„q appears for»y. In Fig. 2 we give
a contour plot of S(q, &o), showing the maxima,
half maxima, and minima associated with the
various modes. At still higher frequencies the
two sound modes continue to be well. defined al-
though the intrinisc linewidths become larger
(i.e. , y, q'&y for v, q ~ 1 6Hz).

Another possible source of coupl. ing is through
impurities. We have made calculations for the
case where the impurity-induced coupling domi-
nates and find that in that case the modes evolve
differentl. y. The lower sound mode joins on to
the combined sound mode and the upper sound
mode evolves to a pinning frequency for the
relative motion of the two systems. In Hg, ~AsF,
experiments show that the correlation length of
the Hg chains at room temperature is determined
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