
VOLUME 4I9, NUMBER 7 PHYSICAL REVIEW I.E TIERS 16 AUGUST 1982

Three-Frequency Motion and Chaos in the Ginzburg-Landau Equation
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The Ginzburg-Landau equation with periodic boundary conditions on the interval l. 0, 2n/
q] is integrated numerically for large times. As q is decreased, the motion in phase
space exhibits a sequence of bifurcations from a limit cycle to a two-torus to a three-
torus to a chaotic regime. The three-torus is observed for a finite range of q and transi-
tion to chaotic flow is preceded by frequency locking.

PACS numbers: 47.20.+m, 03.40.Gc, 47.10.+g

The aim of this article is to describe one possi-
ble transition to chaos in the long-time solutions
of the Ginzburg-Landau equation

iA, + (1 —icp)A „„=icpA —(1 + icp) ~
A

~ A,

where the time variable is t, the spatial coordinate
is x, A g, t) is an unknown complex amplitude,
and c, is a real parameter. Equations of this type
govern the amplitude evolution of instability waves
close to marginal stability in fluid systems such
as Benard convection, ' Taylor-C ouette flow, ' and
plane Poiseuille flow. ' When c,&0, the equation
is dissipative. When c, =0, it reduces to the in-
tegrable cubic nonlinear Schrodinger equation
which governs the modulations of inviscid, deep-
water gravity waves. ' Linear theory' reveals
that the Stokes solution A g, t) =exp(it) of Eq. (1)
is unstable to fluctuations of sideband wave num-
ber q in the range 0& q'& 2(1 —c,')/(1+c, '). In the
present study we examine by means of numerical
integration the long-time behavior of this insta-
bility for initial conditions of the form AQ, O)

=1+0.02 cosqx. The parameter co is maintained
at a constant value c, =0.25 and periodic boundary
conditions are imposed on the interval [0,2~/q].
The character of the solutions is studied by vary-
ing q within the linearly unstable range 0& q & 1.3.

A pseudospectral method' is used to perform
the numerical integration. With a particular
choice of initial conditions, the complex ampli-
tude Ag, t) is expanded into the spatial Fourier
series
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integration was carried to approximately 134
basic Stokes periods. It was checked that the re-
sults are not altered by a change in the value of
Ã, provided Ã is large enough. Note that, ac-
cording to our results, only the lowest five spa-
tial Fourier modes have significant energy,
which is well below the value chosen for N.

Qualitative changes in the behavior of the phase-
space trajectories are followed by making use of
power spectra and Poincare sections. In the
range 0.6& q & 1.31, the motion is periodic and
trajectories are confined to a limit cycle. The
power spectrum exhibits only one frequency f,
and its harmonics. As q' is decreased below the
value 0.6 and remains in the interval 0.52& q

0.6, the flow becomes quasiperiodic; i.e. , its
spectrum [Fig. 1(a)] is composed of two indepen-
dent frequencies f, and f, and their combination
harmonics. The Poincare section [Fig. 1(b)] is a
closed curve, which further suggests that trajec-

A Q, t) = Q [a„(t) + ib„(t)]cos(nqx),
n=0

(2)

where a„(t) and b„(t) are real and N is the trunca-
tion parameter. The inifinite-dimensional system
(1) is effectively approximated by a system of fi-
nite dimension 2N, its degrees of freedom being
represented in phase space by the functions a„(t)
and b„(t). The number N was taken to be N =64,
the time step was chosen as &t =0.001, and the
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spectrum of A(n. /q, t); (b)
constructed by plotting 52
Eq. (2) I.

Bp

regime, q= 0.55: (a) Power
Poincare section of A(x, t),
vs ao whenever a2 = 0 f see
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FIG. 2. Three-frequency regime, q =0.51: (a) Power
spectrum of A(n/q, t); (b) Poincare section of A(x, t)
«nstructed as in Fig. 1(b); (c) power spectrum of

IA I (n /q, t); (d) Poincare section of
I
A I'(x, t) constructed

by plotting (j'2 vs ( j whenever +0= 0.01 csee Eq. (3) ] .

tories are attracted to a two-torus. In the range
0.49 & q & 0.52, the power spectrum [Fig. 2 (a) ]
stays discrete, but in order to explain the pres-
ence of all frequency components in terms of com-
bination harmonics, one must assume that a
third frequency f, has appeared. Since a three-
torus does not reduce to a curve when cut by a
two-dimensional plane, the Poincare section of
Fig. 2(b) is consistent with the existence of a
three-torus. In order to bring the motion back in-
to three-dimensional Euclidian space, we consid-
er instead the evolution of the square of the modu-
lus IA. I'(r, t) which admits a spatial Fourier de-
composition of the form

N-z

lAl '(tr) = Q n„(t)cosnqx.
n=o

It is then found that the spectrum of IA P(r, t)
[Fig. 2(c)] only consists of two independent fre-
tluencies f, -f, and f, -f„with an additional peak
at zero fretluency. By comparison with Fig. 2(a),
the origin of the frequency axis has been shifted
by an amount f, . A Poincare section [Fig. 2(d)]
taken in the phase space of the functions n„(t) con-
firms that the asymptotic trajectories of IA I'(x, t)
are located on a two-torus. In this range of side-
band wave numbers, the evolution of A (r, t) is,
therefore, characterized by three independent fre-
tluencies, one of them (f,) being associated with
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FIG. 3. Frequency locking, q=0.49: (a) Power spec-
trum of Z(It. //q, p); (b) Po.incare section « l&i'{)(,t) con-
structed as in Fig. 2(d).

the phase of A (r, t) and the other two with the am-
plitude IA I (r, t). The spectrum of Fig. 3(a) and
the Poincare section of Fig. 3(b) suggest that, at
4' =0.49, the motion of IA I (x, t) abruptly shrinks
back to a limit cycle. Correspondingly, the mo-
tion of A(r, t) is reduced to a two-torus. This
state is then immediately followed by the appear-
ance of a broad spectrum [Fig. 4(a)] and a scat-
tered Poincare section [Fig. 4(b)], which are both
indicative of a chaotic regime.

In summary, we conclude that the motion of A
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FIG. 4. Chaotic regime, q =0.48: (a) Power spectrum
of A(rr/q, t); (b) Poincare section of IAI (x, t) constructed
as i.n Fig. 2(d).
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(IA I) has undergone successive bifurcations from
a, limit cycle (fixed point) to a two-torus (limit-
cycle) to a, three-torus (two-torus) to chaos. As
just mentioned, the last bifurcation may involve
a preliminary frequency locking. The occurrence
of a quasiperiodic motion with three incomrnensu-
rate frequencies just prior to the onset of a chao-
tic regime has previously been observed in
Benard convection experiments. ' To our knowl-
edge, this is the first instance in which such a
sequence of bifurcations arises in numerical
simulations of partial differential equations. Ac-
cording to Newhouse, Buelle, and Takens, ' per-
turbations of a three-torus can produce strange
axiom-A attractors. The present results suggest
that a three-frequency motion can actually be
stable for a finite interval of values of the control
parameter q.
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Sequence of Instabilities in Electromagnetically Driven Flows between Conducting Cyli"ders
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An experiment on electromagnetically driven flows shows sequences of instabilities in-
volving overstability and slow oscillations of the cellular structure before the onset of
turbulence.

PACS numbers: 47.65.+a, 47.25.-c

Transition to turbulence in hydromagnetic Tay-
lor-vortex flows of liquid metal has not received
much attention until now. This situation con-
trasts with the hydrodynamic case (no magnetic
field) for which extensive experimental data
exist. ' On physical grounds the effect of an im-
posed external magnetic field on cellular flows is
expected to alter profoundly the sequence of
events leading to turbulence. The present Letter
is related to a limited experimental investigation
of Taylor instability subjected to an external mag-
netic field.

Figure 1 shows the experimental arrangement.
The mercury is confined between two "long" cop-
per cylinders, 3.84 cm in height, and 8.0 and 8.22
cm in diameter, respectively; a thin layer of
nickel (25 p, m) and gold (2-3 pm) has been de-
posited on the copper surfaces so that the electri-
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FIG. 1. The experimental arrangement. 1, alloy
aluminum plates; 2, mercury; 3, outer copper. cylin-
der; 4, inner copper cylinders; 5, electromagnet.

cal and mechanical conditions of the flow are well
defined on the boundaries. The duct is axially
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