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Non-Markoffian Theory of Activated Rate Processes
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The Brownian motion of a general classical anharmonic oscillator is studied in the Iow-
viscosity limit for a general non-Markoffian interaction with a heat bath. Memory effects
are shown to have a profound influence on the rate of energy accumulation and relaxation.
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The dynamics of activated rate processes plays
a central role in many areas of physics and chem-
istry. Following Kramers, ' most studies use as
a model a particle moving in a potential well
under the inft. uence of a thermal. bath and distin-
guish between three cases: The high-viscosity
limit corresponds to a diffusive motion of the
overdamped oscillator described by the Smolu-
chowski equation. The intermediate-viscosity
case focuses on the diffusive motion near the po-
tential barrier and yields transition-state theory
as the low-viscosity limit. Finally, for very l.ow
viscosities, the dynamics of the energy accumula-
tion by the particle becomes important and the
rate approaches zero as the viscosity decreases.
Obviously, the dynamics of energy accumulation

!
is always important for nonsteady-state process-

t

x = —(1/M)S V(x)/Sx —f d~ Z(t —7)x(7)+ (1/Ai)R(t),

where (R)=0 and

{R(t,)R(t,))=Z(t, t,)MuT; g dt-Z(t)=y. (2)

The correlation function Z(t) is characterized by
the correlation time &, . For specificity we shall
refer to the simple model

For molecular dynamics problems we usually
have (e is the oscillator frequency)'

y « 1/7' « (d. (4)

The existence of these vastly different time
scales makes the problem very difficult to solve
numerically though such solutions have been ob-

es, e.g. , when the kinetics is monitored following
a temperature jump.

The starting point in the Kramers model is the
I angevin equation x'= -(1/M) &V(x)/Bx-yx +(1/
M)R(t), where x is the coordinate of the particle
of mass M moving in the potential V(x) and where
y and R are the damping rate and the (assumed
Gaussian) fluctuating force associated with the
coupling to the thermal bath [y and R are related
by the fluctuation-dissipation theorem (R(t, )R(t,))
=2yMkTb(t, —t,), k being the Boltzmann constant
and T the temperature]. In many cases the cor-
relation time associated with the bath is longer
than the characteristic period of the particle
(though still much shorter than the rate of ener-
gy exchange).

In this case we use the model described by the
generalized Langevin equation
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tained using stochastic classical trajectories. '
In this work we reduce Eq. (1) so as to obtain a.

Markoffian equation (characterized by a single
time scale) for the time evolution of the system
energy (or rather the action variable). We thus

generalize Kramers's result for this low-viscos-
ity limit to the non-Markoffian case.

Three previous studies are relevant to our
problem. Zwanzig' has described a procedure
for reducing Hamilton's equations of motion to

get a, result similar to Eq. (21) below. Grote
and Hynes' have studied non-Markoffian effects
on the diffusive dynamics near the barrier top,
thus generalizing Kramers's theory for the in-
termediate-viscosity case. The result obtained
here corresponds to the energy pumping stage
rather than to the barrier dynamics. Lax' has
described a reduction procedure which can be

used to derive the Fokker-Planck equation cor-
responding to Eq. (8) below. I ax, however,
limits himself to the standard second-order iter-
ation procedure which is not sufficient in our
case as discussed below.

Starting from Eq. (2), we assume that the free
motion [x = —(1/M)S V(x)/Sx] is known in the
sense that x(t) and v(t) =x(t) are given as'

x(t) =Q„x„(J)exp(iny);

v(t) =Q„v„(J)exp(in('p)

with known coefficients x„(J) and v„(J)= in&a(J)
xx (J). J and (p are the action-angl. e variables
whose free equations of motion (EOM's) are J
= const and cp =(p, + e(J)t.

Under the influence of the thermal bath the
EOM's for J and y become

J(t) =i(f(ex/aq )(- f, d~Z(t —~)v(~)+(I/X)R(t)],
tj (t) = ~(J) -m(ex/s J)[- f, d~ Z(t —~)v(~)+(1/m)R(t)].

Using (4) and (5) and invoking the rotating-wave approximation by disregarding deterministic terms
containing exp(tn(p) with n & 0, ' we can approximate (6) by

J=F (J) + iR (t)g„nx„exp(tn(p ),
(p = &u(J) R{t)g„x—„'exp(in(p),

with

(6)

(7)

(8)

F(J) = i)d (v(J)g—„n'I x„I'Z„, (9)

(»)
{11)

(d(J) =(d(J)+ilVi (u(J)~.„nx„'x „Z „,
Z„=Z„{(u{J))= f dt Z(t)exp[-in~(J)t].

Here x„' =dx„/dJ. Despite their appearance, Eqs. (7) and (8) are not Markoffian. The time evolution

of the probability distribution P{J,q, t) is determined by the equation

(12)

i(.J(t, 7) = f, ds J{J(t+s),cp(t+s), t+'s),

where J(J, p, t) (is given by Eq. (7), as a basis for iteration in the form

t).J("(t, ~) =f 'ds J{J(t)+t).J" "(t,s),cp(t)+a(p" "(t,s), t+s).
Here (l) denotes the lth iteration stage. In the Markoffian case (where ~, is the shortest time scale)
it is usually found that (a) moments ((bJ) (b, p)") with m+k &2 are of order w", n & 2, and do not con-
tribute to (12), and (b) all the relevant terms (of order ~) of the necessary first and second moments
(m+k =1 or 2) are obtained at the second iteration stage. This leads to the standard Fokker-Planck
equation.

(14)

where t), W=AW(t, v)=W(t+r) —W(t) (W is J or (p). The limit in Eq. (12) should be understood as taking

7«y '. However, v is kept larger than 7, (and (() ') in order to yield a coarse-grained Markoffian
equation.

Consider, for example, AJ. The standard procedure is to use
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The present case is different: Terms of order ~ are found at all. orders. For example, the integral

I„'"'=J ds, J ds, .J ds„exp[i&un(s, —s„)]Z(s,—s„),
encountered in the Nth order iteration of (~J), satisfies

(15)

I„'"'= (, „, ,
(d/d(u)" 'Z „((u)+0(7,/7),

so that such terms contribute in principle to (12). A careful examination of such higher-order contribu-
tions reveals that all but two are negligibl. y small, being of order d Z„(~)/duF, N ~ 1. The two non-
negligibl. e contributions which do not have analogs in the Markoffian case appear in the calculations of
gJ) and (hp) in the third order of the iteration procedures. There we get terms containing (d(d/dJ)I„("
which lead to results containing dz„/dJ rather than dz„/dv. The final results for the moments which
contribute to (12) are

(aJ) ", ct= —2M (8)g n 'I x„I
'Z ' + 2M k T—(2 n 'I x„ I

'Z. ' ),
n =1 n =1

= (d+ VtI(8)Q n Z„—MkT —Q n Z„
n =1 J (17}

«")'=4 kTg. I..I
z ~

7 1
=4MkTQ " Z QJ~ )/~07 n =1

where

(J) = 2M Z; "I.„I'z„.
n=1

(19)

Equations (18) and (19) constitute our final re-
sui. t. Equation (18) [and Eq. (22} below] have been
previously derived by Zwanzig. ' We next study
their behavior in some simple l.imits. At equil. ib-
rium, ()P/st=0, we obtain the Boltzmann distri-
bution

P,„(J)—exp[- H(J)/kT ],
where H(J) = f dJ'&u(J') is the energy. In the
Markoffian l.imit Z(t) = 2y5(t) and Z„=y we get

~(J) =2y~Z; n'Ix. I'=yJ/~(J},

(20)

(21)

(with corrections of order ~), where Z„'
=Rez„(~) and Z„' = —Imz„(&u).

From Eqs. (12) and (17) we get a Fokker-Planck
equation for P(J,p, t). For our purpose it is suf-
ficient to consider the situation where P =P(J, t}
is independent of y. We get

—P(J, t) —t(Z) fd(J)~= 8T—P(J, t)I, (18)
8 8 8

where the last identity may be derived from J
=Mfvdx by use of Eq. (5). Equations (18) and

(21) lead to the result derived by Kramers for the
l.ow-viscosity limit. Finall. y, for a harmonic
oscillator x„=0 for InI 0 1 and x,(J)=x,(J) = (J/
2M v)' '. In this case e (J)=Z, '(w)J/(8) and

BI' „, 8 J—= Z ' ((d )——&u + k T P-
Bf BJI (d

(22)

This result clearly shows the effect of finite time
correlations on the rate: The time is scaled with

Z, '(&e) in exactly the same way as it is with y in

the absence of correlations.
In order to solve Eq. (18) we have to evaluate

e(J). This may be done numerically by truncating
the infinite series in (19), provided the determin-
istic motion [i.e. , the functions x„(J) and a&(J)]

is known. For a. Morse oscillator, V(x) =

D[exp(- 2x/a) —2 ex (—x/a)], we get x„(J)= (a/
n)[+,J/(4D —v,J)]" where (d, = (2D/Ma~}' 2 is the
bottom frequency (a&,J & 2D). The series in (22}
thus converges rapidly for H(J) &D

Equation (21}may be used to obtain an expres-
sion for the mean first-passage time for energy
accumul. ation in the oscillator. The resul. t is'

1
~ MFP (J8JB)

exp[H (x)/k T ]
E x 0

(23)

where 8 is the initial action and J~ is the action corresponding to the specified energy threshold. This

result may be used to obtain the rate of activated processes in the low-friction limit where energy ac-
cumulation becomes the rate determining step. In Fig. 1 we plot T~p(0, J~) for H(J~} =2. 5kT for a



VOLUME 49, NUMBER 7 PHYSICAL REVIEW LETTERS 16 AUGUST 1982

I20—

80—

see that 7, has a profound effect on the rate ob-
tained in the non-Markoffian Kramers model.
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FIG. 1, Q7'MFp vs coo'p for a Morse oscillator from
Eq. (23) (lines) and from stochastic classical trajecto-
ries (points with error bars). p/~o= 0.04.

Morse oscillator and the model (3) as a function
of v, . For D=2.5kT and 5AT we compare results
calculated from Eqs. (1)-(3) using stocha. stic clas-
sical trajectories to those obtained from Eq. (23).
The agreement is good even when J~ corresponds
to the dissociation threshold where the low-vis-
cosity condition &u»y does not apply. We also
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The rotational quantum mechanics of a new analytic model for a hindered rotor is pre-
sented, and rotational-state distributions of the hindered rotor are given in terms of un-
hindered rotor states.
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The role played by the rotational degrees of
freedom of diatomic molecules which are dynam-
ically coupled to solid surfaces has been the focus
of several recent experiments in which the ob-
served rotational-state distributions of diatomic

molecules scattered, ' desorbed, ' and sputtered'
from surfaces bear no obvious relationship to
equilibrium state distributions inferred from sur-
face temperatures. In this communication we
present the main features and illustrative numer-
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