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Edwards Responds'. Treatments of collections of
particles as continuous systems are common and
the literature covering action-integral approach-
es using Eulerian variables where variations are
taken with respect to the velocity fields is exten-
sive. ' In fact, without suggesting that the deriva-
tion is classical or that there might be classical
applications, Geurst recently used an action very
similar to I, in my recent paper' to derive the
Ginzburg-Landau equations as well as the London
equations. '

The key question arising from my paper is
whether or not the Eulerian action I, properly de-
scribes certain classical physical systems. Each
of the preceding Comments attempts to negate
such a possibility primarily through arguments
concerning the relationship of I, with the particle
action I,. However, as I shall argue, rather than
disproving the concept they actually aid our un-
derstanding of the precise nature of the physical
systems to which I, applies.

On page 1864 of my paper I referred to I2 as
the "Eulerian equivalent" of I,. By this I did not
mean a strict mathematical equivalence as some
apparently thought for, as I showed in some de-
tail following Eq. (8), the set of possible solu-
tions to the Lorentz force relation which follows
from both actions is restricted by the London
equations which come only from I„and hence
there is clearly an important difference between
them.

deVegvar questions my use of I, to represent a
system of particles. Segall, Foldy, and Brown
argue that my methods for going from I, to I, and
to the London equations are inherently incorrect
and Henyey shows in what way I, differs from I,.

deVegvay's Comment. —In view of singularities
that arise, deVegvar questions the use of the
Euler-Lagrange equations with I, when j repre-
sents a sum over particles. The proof of con-
vergence based on the Schwartz distribution the-
ory can be outlined as follows:

For fluids consisting of an ensemble of parti-
cles we approximate the world line of each parti-
cle, i, by a tube extending a small radius $, from
the world line and we approximate j by a smooth
function J, which is nonzero within the tube, falls
to zero quickly and smoothly immediately outside
the tube, and remains zero beyond radius f,
where f, &$,. With. in the tube, where the inte-
grand of I, is differentiable with respect to J,
the Euler-Lagrange equations must be satisfied,
and consequently A, + (~/q) U, = 0 where U =J, /
(J„J )"'. Now we shrink each tube, letting g, be-

come small. As we do the tubes approach the
world lines, J approaches j, and U approaches
u, the velocity of the particles. We are not con-
cerned with the conditions at the edges and out-
side the tubes, i.e. , where (J„J )'" is not differ-
entiable with respect to J, because we are inter-
ested in the behavior of the particles, not in the
space between them.

Concerning the nonlocal nature of the response
of an electron gas, the London theory is a local
description and is valid to first order whether
one considers its derivation to be classical or
quantum mechanical. The nonlocal theory of Pip-
pard, later derived from -BCS theory, is a refine-
ment which is yet to be investigated within the
present classical context.

Segal/, I"oldy, aM Byron's Comment. —Segall,
Foldy, and Brown attempt to demonstrate that the
results from I, are invalid unless one introduces
constraints because when q = 0 the variation of I,
with respect to u, results in u =0. The problem
here is that for a charged fluid, I, inherently con-
tains the conservation of charge (and consequent-
ly of mass as well) as seen from the fact that
8 j = 0 results from Maxwell's equations which
themselves come from I,. However, with q = 0
the conservation of mass is lost and must be re-
inserted as a constraint; consequently one no
longer gets u, = 0 but u + B,g =0 where g is an un-
determined multiplier.

However, as Segall, Foldy, and Brown point
out, even that result is unacceptable for a neutral
fluid because the curl of the velocity is zero.
This apparent dilemma has been extensively dis-
cussed in the literature' and was the original mo-
tivation for introducing the Lin constraint' which
removes the contradiction and allows one to de-
rive the equations for an uncharged, perfect fluid
and, when applied to I, for a charged fluid, leads
directly to the Lorentz force equations without
the London equation restrictions.

But does the neglect of the Lin constraint nec-
essarily lead to absurdities and, if not, under
what circumstances can it be neglected?

Benyey s dd xieation. .—Beginning with I„Henyey
carefully transforms to the Eulerian form and
shows that I, is strictly equivalent to I, only when

I, is supplemented by the Lin constraint. This
derivation is significant because in it the Lin con-
straint arises naturally and need not be imposed
in an ad hop manner as is so often done. Thus
Henyey's derivation clarifies the difference be-
tween I, (unconstrained) and I,. Using I, without

the Lin constraint, as I did, is the same as set-
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ting Z, =0 in Henyey's equations of motion. The
result is the London equations, the solutions of
which are a subset of the solutions to the Lorentz
force relation. We therefore ask, are there phys-
ical systems that require the neglect of the Lin
constraint?

8'hen to neglect the Lin constyaiQ. —The Lin
constraint refers to the ability to follow the path
of a fluid element from one position to another.
For most fluids this is possible, hence the con-
straint applies. However, because of the Heisen-
berg uncertainty principle, one is unable to ex-
actly follow the trajectory of a quantum fluid as
discussed in a recent paper by Putterman. '
Hence, at least for such fluids, the Lin constraint
cannot be imposed. Putterman agrees that I, in
my paper is classical and that the steps of the
derivation from it, including the neglect of the
Lin constraint, are permitted. However, he
maintains that neglecting the Lin constraint is a
subtle but crucial quantum mechanical assump-
tion in an otherwise classical derivation.

Let me now sketch the reasons why collision-
less, classical fluids also require one to neglect
the Lin constraint and, consequently, are also
governed by the London equations. Because
space will only permit an outline, a full discus-
sion will be submitted for publication elsewhere.

Consider first why one can follow elements in
most classical fluids. It is because of local,
binary, short-range, surface forces between the
fluid element and its near neighbors. If, to ob-
serve an element of warm fluid whose particles
are collisional, a photon were scattered from it
the momentum imparted to it would be quickly
transferred to its near neighbors and thence to
the system as a whole. Consequently, the path
of the element would be essentially undisturbed
and hence the Lin constraint would apply and the
London equations would not.

On the other hand, the momentum imparted by
a photon to an element of a cold, classical plas-
ma in collective, collisionless motion would
change its path, removing it from the collective
state, and subsequent collisions would not re-
store it but would randomize the motion and heat
the system. The path could not be followed mith-
out destroying the collective state, and hence the
Lin constraint would not apply and the London
equations mould.

Similarly for a charged fluid whose particles
are in collective motion but whose collision
cross sections are small, the momentum trans-

ferred by a photon to an element would remove it
from the collective system and hence its path
could not be followed. This argument can be ex-
tended to hot, collisionless plasmas. The exten-
sive work on collective motion by Pines and
Bohm' should be pertinent in guiding the develop-
ment of quantitative criteria for systems to which
the Lin constraint would not apply.

- The possibility that there exist classical sys-
tems which require the London equations, as I
have suggested, justifies considerable effort to
experimentally establish or disconfirm the idea,
because, if such systems do exist, e.g. , thermo-
nuclear plasmas, attempts to explain or control
their behavior without using the London equations
would be as contrived and ultimately unsuccess-
ful as were early efforts to explain superconduc-
tivity without the London theory. In addition, the
classical explanation of effects in superconduc-
tors and superfluids would contribute to our un-
derstanding of the foundations of quantum theory.

Positive experimental evidence is accumulating
including flux ropes in the Venus ionosphere, '
Saturn's ring structure, ' and filamentation in the
plasma focus. ' It is hoped that a direct labora-
tory test will soon be made.

I wish to thank R. Allen, A. P. Edwards, B. F.
Edwards, V. G. Lind, R. C. Thompson, and, in
particular, Yeaton H. Clifton for helpful discus-
sions.
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