Comment on the Applicability of Lagrangian Methods to the London Equations

Edwards¹ claims to derive the London equations from a classical action in the limit of arbitrarily long collision times. His conclusions are fallacious for the following reasons.

Edward's Eulerian action I_2 [his Eq. (6)] is indeed equivalent to the full particle-field action I_1 [his Eq. (1)] for noncolliding particles of constant mass-to-charge ratio. Note, however, that the definition [his Eq. (5)] of four-current,

$$j^{\beta}(x^{\nu}) = \sum_{i} q_{i} \int u_{i}^{\beta}(\tau_{i}) \delta^{4}(x^{\nu} - z_{i}^{\nu}(\tau_{i})) d\tau_{i},$$

where $z_i^{\nu}(\tau_i)$ is the world line of the *i*th particle, is a highly singular object: It vanishes off world lines and is δ^3 -like on them. Taking the variation of I_2 with respect to $j_{\theta}(x^{\nu})$, we get

$$0 = \delta I_{2} = \int d^{4}x \left\{ A^{\beta} \delta j_{\beta} + (mc/q) \delta [j^{\beta} j_{\beta}]^{1/2} \right\}$$
$$= \int d^{4}x \left[A^{\beta} + \frac{mc}{q} \frac{j^{\beta}}{(j^{\beta} j_{\beta})^{1/2}} \right] \delta j_{\beta}, \qquad (1)$$

provided $j_{\beta} \neq 0!$ Edwards sets the brackets equal to zero and defines the fluid four-velocity $u^{\beta} \equiv j^{\beta}/\rho_0$ to get his Eq. (7). But, even if δj_{β} is smooth over all space-time, $j_{\beta}/(j_{\beta}j^{\beta})^{1/2}$ is highly singular: It is 0/0 off world lines and $\delta^3/(\delta^3\delta^3)^{1/2}$ like on them. To set $[\cdots]=0$, to get the usual Euler-Lagrange equations, all the terms must exist and be continuous.² This criterion fails when applied to (1).

To use the Lagrangian method and avoid such singularities, j_{β} must be smoothed. In fact, it is straightforward to show that if j_{β} is replaced by $\langle j_{\beta} \rangle$ in Edwards's I_2 , where $\langle \cdots \rangle$ represents spatial averaging on a scale much smaller than the mean free path, then one obtains his Eq. (7) by defining $\langle j_{\beta} \rangle = \rho_0 u_{\beta}$. But then the Lagrangian

 I_2 used with j_β replaced by $\langle j_\beta \rangle$ does *not* reduce to his original Lagrangian I_1 . Moreover, the current densities in the London equations are smoothed and not the δ -function variety which Edwards has constrained his solutions to be. These difficulties do not arise when dealing with I_1 , for then all objects are well defined. In particular, no variation of $u_{i\beta}$ is made off the *i*th world line, so that $u_{i\beta}$ never vanishes.

Finally, even if (7), as written, were justifiable, it could not describe a superconductor because it is a local relationship between currents and fields. As is well known,³ the current response of an electron gas to a field is nonlocal: j_{β} at a point depends on a spatial average of extent ~l and a time average of duration ~ $l/v_{\rm F}$ (l is the mean free path, $v_{\rm F}$ the Fermi velocity). Thus even if one could use Edwards's¹ (7) at all in superconductors, it would be restricted to the case of static uniform fields, precluding its application to penetration phenomena.

I wish to thank N. D. Mermin for useful discussions. This work was supported by National Science Foundation Grant No. DMR-78-1091 and by the Cornell Materials Science Center through National Science Foundation Grant No. DMR-79-24008 A02.

Paul G. N. deVegvar

Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, New York 14853

Received 2 February 1982 PACS numbers: 03.50.De, 52.30.+r, 74.20.-z

¹W. F. Edwards, Phys. Rev. Lett. 47, 1863 (1981).

²G. A. Korn and T. M. Korn, *Mathematical Handbook* for Scientists and Engineers (McGraw-Hill, New York, 1968), 2nd ed., pp. 344-349.

³M. Tinkham, Introduction to Superconductivity (Mc-Graw-Hill, New York, 1975), p. 5.