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Percolation is often used as a model for critical behavior of the sol-gel transition. A
three-dimensional kinetic model for gelation, similar to that of Manneville and de Seze,
is investigated with a Monte Carlo method. By looking at the ratios of the critical ampli-
tudes of the "susceptibility" (weight-average degree of polymerization) below and above
the percolation threshold, clear evidence is found that this model is neither in the univer-
sality class of standard percolation nor in that of classical (Flory-Stockmayer) theory.
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The sol-gel transition' is apparently more com-
plicated than predicted by the current theories.
This was first shown in 1976 when Stauffer' and
de Gennes' suggested that percolation on a three-
dimensional (3D) lattice is a good model for criti-
cal phenomena in gelation, since the classical the-
ory of Flory' and Stockmayer' is identical to
percolation on a Cayley tree. As in the case of
coagulation' or some other kinetic percolation
processes' there has been mounting criticism'
that standard percolation does not consider the
growth process of the gelation, i.e. , the kinetics.
It has been suggested that a kinetic gelation model
might not even be in the universality class of
standard percolation. '

In this Letter we present Monte Carlo evidence
that indeed a rather realistic growth model for
the sol-gel transition, similar to that of Manne-
ville and de Seze, ' is not in the same universality
class as percolation.

We want to describe a model of gelation for the
irreversible free-radical copolymerization proc-

ess. Here the sol consists of small monomers
and the gelation is initiated by radicals. The radi-
cals saturate, opening up a double bond of a mono-
mer and leaving one bond in the monomer un-
saturated. This creates a new radical that con-
tinues the growth process. We use L &I &L sim-
ple cubic lattices with periodic boundary condi-
tions containing a concentration &, of bifunctional
sites and a concentration 1 —&, of tetrafunctional
sites. (A bifunctional or tetrafunctional site can
have at most two or four occupied bonds incident,
respectively. ) The initialization is performed by
randomly occupying a fraction c~ of bonds. For
simplicity, no adjacent bonds are allowed to be
occupied. Chemically, an occupied bond means
a broken double bond between carbon atoms. The
two free ends of an occupied bond are the radicals
or "active centers. "

Now, the growth process is
performed as follows: We randomly choose an
active center and an adjacent bond of this center.
If the other end of this bond is not forbidden, i.e. ,
is not a bifunctional or tetrafunctional site al-
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ready having two or four incident occupied bonds,
respectively, the bond is occupied and the active
center is shifted to the other end of the bond. In
this way more and more bonds are occupied. A
typica1 stage of growth where the fraction p of
occupied bond is p =0.17 is shown in Fig. 1. The
active centers can annililate if there is only one
bond between them and this bond becomes occu-
pied. Active centers can become "stuck" if all
surrounding sites are forbidden. In summary,
we model an irreversible gelation process where
the chemical conversion factor p for the bonds in-
creases as a function of time.

We simulated this growth model by a Monte
Carlo method. The molecular weight distribution
n, of the macromolecules, i.e., the number per
lattice site of clusters containing s sites each,
was calculated at different fractions p of occupied
bonds. By initiating several hundred independent
growth processes we determined the susceptibility
y =ps'n„ its statistical error, and the mean gel
fraction G =fraction of sites in the "infinite clus-
ter ~

"'
The susceptibility is expected to diverge as

y = C+ (p -p.) y for p& p„
X =C (p, —p) y for p&p„

and R =C /C, near the gelation threhold p, ,
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y =1.98+ 0.10 and R =2.6+ 0.8. (2)

For comparison we plot X for standard bond
percolation" in Fig. 2(b) for comparable lattice
size, and using the same method of analysis we
find

y =1.74+ 0.06 and R =10.0+ 1.6. (3)

These values agree very well with those obtained
by other authors, e.g. , R =8-11 (see Nakanishi
and Stanley" and Hoshen et al.").

Because the finite-lattice effects in Fig. 1(a)
are very strong, we also analyzed our results us-
ing finite-size scaling" as shown in Fig. 3. p, ,
y, and v were adjusted in such a way that above
and below p, the points for different lattices sizes
collapse onto a single curve. Furthermore, the

where the infinite cluster first appears producing
the gel. (We found P to be a smooth function of
time, with no irregularities' apparent at the
threshold. )

In Fig. 2(a) we plot X above and below p, =0.074
logarithmically versus I p —p, l /p, for c, =0.003
and c, =0 for different lattice sizes. p, was deter-
mined by the criterion. that the slopes y in this
log-log plot should be equal on both sides of p, as
required by scaling. " Values for p, determined
in this way are consistent with estimates of the
value of P for which the gel fraction goes to zero.
We see in Fig. 2(a) that we obtain straight lines
for a fair range of values. From these linear re-
gions we obtain
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FIG. 1. Top plane of an 8 &&8 x 8 lattice with bifunc-
tional monomers (dots) and tetrafunctional monomers
(dots with circles). The occupied bonds (solid lines) can
also connect monomers on opposite edges because of
the periodic boundary conditions. Only active centers
(stars) in the plane are shown. Bonds directed out of
this plane, i.e., up or down, connect monomers in the
plane above or below and can well end in active centers
in these planes. This is the result of a Monte Carlo
simulation at a concentration cq ——0.8 of bifunctional
monomers, after the total number of bonds occupied by
radical reactions has increased from an initial value of
10 to 261.
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FIG. 2. Susceptibility vs (p —p (/p for (a) kinetic
gelation at cz ——0.003, cq ——0, and p, =0.074; and (b) bond
percolation, p =0.264. The statistical errors are
shown whenever they are larger than the size of the
symbols used. The dashed lines are guides to the eye.
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FIG. 3. Finite-size scaling of the susceptibility for
ci ——0.003 and c2=0 with p =0.074, y=2, v=1. The
straight lines have a slope of -2; R=2.7+0.8.

FIG. 4. Finite-size scaling of the susceptibility for
cr -—0.003 and c2 ——0.9 with p =0.118, y=2, v=1. The
straight lines have a slope of -2; A= 3.2 +0.9.

linear region of both curves must have slopes
equal to -y. Within the errors of the individual
points the curves scale with y =2.0+ 0.1 and v

=1.0+ 0.2 yielding R =2.7+ 0.8. Comparing with
Eq. (2) we see that a careful finite-size analysis
confirms the result obtained from the straight-
forward log-log plots.

Generally the ratio R is considered to be uni-
versal for percolation. " our value for R in Eq.
(2) is clearly different from the standard percola-
tion value in Eq. (3) and also different from R =1
which is the ratio predicted by the classical theo-
ry of Flory and Stockmayer. Therefore, the kine-
tic gelation model lies in a different universality
class. The exponents y for our model of kinetic
gelation, Eq. (2), and standard percolation, Eq.
(3), are too close to reliably state whether or not
they are different. The same appliep to &, which
we found to be slightly larger in the kinetic model
compared to standard percolation.

In Fig. 4 we perform the same analysis as in
Fig. 3 for a large concentration of bifunction
monomers, &, =0.9. We find essentially the same
ratio R and exponents as for c, =0. The same re-
sult is obtained for &, =0.6, 0.8, and 0.95. Thus,
the models for all concentrations &, appear to lie
in the same universality class. This result con-
tradicts a conclusion of Manneville and de Seze'

but is in accord with a recent test of universality
for branching chains by Ord and Whittington. "

If we increase (decrease) c, by an order of mag-
nitude, we find P, =0.166 (P, =0.0325) and R in-
creases (decreases). However, the error bars
for the increased (decreased) R overlap with the
error bars for R in Eq. (2).

In summary, our results confirm our initial ex-
pectation that the sol-gel transition is more com-
plicated than currently believed. We find that the
kinetic gelation model presented belongs to nei-
ther the same universality class as standard per-
colation nor the universality class of the classi-
cal theory. The experimental investigation of R
unfortunately is still difficult to interpret' so that
a reliable experimental test still needs to be done
for R. Presumably the kinetic aspects, not other
deviations from random percolation, are respon-
sible for the formation of the new universality
class. It remains open whether different kinetic
models belong to the same universality class as
the present model.

More detailed results and experimentally meas-
urable quantities will be presented elsewhere.
As a next step for improving the understanding
of the sol-gel transition we suggest the inclusion
of mobility ' and of a solvent, and eventually
the removal of the lattice restriction.
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