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A simple model of a classical spin-glass with weakly correlated disorder is presented.
It includes both randomness and frustration, and is exactly soluble, but its solution can
be obtained without replicas. Among the several phases of the model a mixed phase is
found where spin-glass and ferromagnetism coexist. In addition the characteristic S
shape of the spin-glass magnetization is reproduced.

PACS numbers: 75.50.Kj, 05.50.+q, 64.60.Cn

A spin-glass is a disordered, magnetic system
with a well-defined freezing temperature T& such
that for T &T& the magnetic moments are frozen
in random orientations without a conventional.
long-range order. ' At the moment there is some,
at least experimental, consensus' that one has a
phase transition at T =T&. In this Letter I aim to
provide a soluble model to describe the spin-
glass transition and the spin-glass phase.

To model a typical spin-glass like AuFe the fol-
lowing facts must be considered. First, the con-
centration of the magnetic moments (Fe) in the
metallic host (Au) is rather low, so that the dis-
tance between them is fairly large, and their loca-
tions are only weakly correlated. Second, the
spins interact mainly indirectly, via the Ruderman-
Kittel-Kasuya- Yosida (BKKY) interaction whose
characteristics are (a) a long range, and (b) a
strongly oscillating sign (as a function of the dis-
tance). Finally, there may also be a direct, fer-
romagnetic coupling.

One may assume that the spins are on a regular
lattice and take the interaction as random. ' The
simplest assumption, a+ J or Gaussian nearest-
neighbor interaction, is unlikely to produce a
phase transition at positive temperatures. An

infinite-range Gaussian interaction, though in-
tuitively reasonable, does not yet a1.low a simple
analytical treatment —in spite of considerable
efforts' which, however, did show a spin-glass
phase transition and pointed out the possibility
of a "mixed" phase. I therefore propose a new
A.nsatz, which is consistent with the randomly
oscillating, long-range, RKKY interaction.

We start with the Hamiltonian

X„=— Q S(i)S(j)— Q J;, (Si) (Sj)
J

(i,i ) (i, ,i )

-n+S(i).

This describes N Ising spins interacting with an

external magnetic fiel.d h, and with each other in
pairs (i,j). A direct, ferromagnetic coupling has
been incorporated via J,. The J„contain the
randomness,

J, =(8/N)($, q, +$,q, ), .

where the $; 's and q, 's are independent, identical-
ly distributed random variables with mean zero
and, say, variance one. It can be shown that the
J,, are weakly correlated. Here I will outline a
new method to calcul. ate the free energy, discuss
the phase diagram, and show that about half of
the spins belong to a fully frustrated' configura-
tion.

The free energy f(P) is given by

—Pf(P) = limN 'ln Tr exp(-PSC„).

The trace is a finite sum over alI. spin configura-
tions, and the $; 's and q; 's have fixed values,
randomly chosen according to their distribution.
We put

1 N 1 N.=N ES(i), q,.=-Z~, S(),N ~ r lN

1 N

=
N Z n;S(j),

g =1

and rewrite the Hamiltonian XN,

—PX„=N(2 Kom~2+Kq, ~ q2„+Pm„)
=- NQ (m)

with PJ, =K» PS=K, and Pk =II. Instead of the N
spins we will use the three components of the vec-
tor m= (m»q», q») as summation variables in
the trace and, hence, need something like a
Jacobian. To see how this may be accomplished
we must make a small detour.

Suppose we have a sequence of independent,
identically distributed stochastic variables o,.
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with mean zero and finite variance. As N- ~,
1

S~ ——NQ o, -0
i=1

(6)

c+(m) = sup (mt —c(t)j.
OO($ (+ OO

The function c(t) is convex and so is its Legendre
transform c*(m).' We have"

lim N 'ln Prob(S~ =- e}= —c*(e),

where c*(m) ) 0, with equality if and only if m
=0. For the events(S~ (e}with e (0 an analogous
formula holds. The limit N- ~ is essential in
obtaining Eq. (9), which suggests that as N

Prob(m (~S (m+dm}-exp(-Nc*(m)}dm.

(10)
~e now return to the original problem.

Consider the Ising spins as independent sto-
chastic variables which assume the values + 1
with equal probability. Given N we divide the
trace by 2" in order to get a no~malized trace
E s(X}= 2 "Tr(X}, a spin-configurational average
of X wit hE(s1 }=1. Let W„=(Nm„,Nq, „,Nq~)
and define

c(t)=lim 1V 'lnEs(exp(t W„)j.

with probability one. ' The event (S„~e}with e )0
is called a large deviation since it becomes more
and more improbable as N-~. %e wish to esti-
mate its probability Prob(S~ ) e}. To this end
we introduce two functions,

c(t) = ln(exp(tc)),

normalization of the trace.
The maxiumum in (14) is realized for a certain

m= (m, q»q, ) and the negative of c*(m) is the
mean entropy. Using the convexity of c"(m) one
shows that q, =q, =-q maximizes the free energy
functional in (14). The remaining order param-
eters m and q satisfy the equations

m =(tanh(K, m+H+Kq($+rl)}), (15a)

q =(t anh(K, m+H+ Kq($ +q)}($ +r!) /2) . (15b)

Putting H = 0 we quickly recognize three phases
as special solutions of (15). The trivial solution
m=q=0 represents a paramagnet (P). If q=0
and me 0, we have a ferromagnet (F), and when
m = 0 and q 4 0, a spin-glass phase (SG) appears.
But what about a mixed phase~ If there were a
mixed phase (II), both m and q would have to be
nonzero. To see how this might occur we take $
and p as + 1 with equal probability; cf. Fig. 1.

The N lattice points can be divided into two
disjoint subsets according to the sign of ), rl,
We call the points with (; rl, =+ 1 blue and the re-
maining ones, where $;rl; = —1, red. Since

(~, n, +~,n, j=~,n, (1+~,n, ~,n, }=0,
whenever i and j have a different color, the ran-
dom interaction only connects points of the same
color. The ferromagnetic interaction is "color
blind. " Which one wins depends on o. =J,/J and
K-' = Z'/J.

If the ferromagnetic interaction is absent (J,
=0), the system breaks up into iwo decoupled
subsystems, blue and red, which both contain
about 2N points. The Mattis" transformation
S(t)- ),S(i) (the model is classical! ) transforms

For Ising spins (there is an analog for n-vector
models) we easily obtain'

c( t) = (in[cosh(t, + t,$ + t,q)] ), (12)

for almost every random configuration of $,. 's
and r!, 's. The average in Eq. (12) is taken with
respect to one $ and one q. The function c(t) is
convex and so is its Legendre transform' c*(m).
Using Eq. (5) and a sl.ight generalization of Eq.
(10) we then find, as N

E s(exp(- PIC„)}—5 d'm expN(Q(m) —c*(m)j,

1.0

0.5

and thus 0.0 0.5 1.0

—Pf(P) = max(Q(m) —c*(m)j, (14)

apart from a trivial ln2, which comes from the

FIG. 1. Phase diagram for ( and g= + 1 with equal
probability. II is the mixed phase. Note that (1,1) is a
triple point (Ref. 11). There is no external field.
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blue into ferromagnetic, and red into antiferro-
magnetic. At sufficiently low temperatures (K '
&1) blue will thus" be ordered, whereas red re-
mains disordered (uncorrelated) down to T = 0
because of the large amount of frustratior. all
the simple closed loops (i.e. , all triangles) are
frustrated. We now undo the Mattis transforma-
tion, and note in passing that we have also shown
that about half of the original lattice is fully
frustrated as a Mattis transformation is frustra-
tion preserving. " Blue has spin-glass order with
order parameter q~, whereas red remains un-
correlated.

If 0&+«1 and K '&1, the random interaction
dominates and, as before, we find blue in a spin-
glass phase. Whatever its strength, the random
interaction can never order red. Nevertheless
ferromagnetic order will appear on red provided
pJ, =K, &2, because in this way red gains extra
energy via the 4, term; i.e. , we obtain a mixed
phase. Note that the entropy does not yet play a
significant role. At PJ', = 2 red has a ferromag-
netic phase transition and becomes uncorrelated
above this line. We enter the pure SG phase,
which will persist up to K ' = 1.

. On the n axis of Fig. 1 we find a II-F transition
at o. =~. Here 7.'=0, and so an energy argument
suffices: With S(i) = $, on blue and S(i) =+ 1 on
red the ground-state energy is —

& J,—&4, where-
as it is —z 4, when all. the points are ferromag-
netic. If a&1, the J, term should dominate, what-
ever the temperature. This is indeed the case.

Analytically one has to solve the fixed-point
equations (15) and choose the solution that max-
imizes (14). The mixed phase appears, through
a secondary bifurcation, as a twig on the main
SG branch. It is acceptable if a~ &.

The spin-glass magnetization m(h) exhibits a
distinct S-shape character (see Fig. 2). It has a
field-induced transition" to a state of higher mag-
netization above a certain threshold field, whose
value A, , increases as the temperature is lower.
The initial susceptibility y, has a cusp at the P-
SG boundary and a divergence at the SG-II bound-
ary; both lines are critical. The specific heat
has its main singularity (a jump) at the P-SG
boundary if 0& n &1. Because of the ferromag-
netic feedback, the model has an essentially
unique ground state with zero entropy. The last
three observations follow easily from the blue
and red picture.

In summary, I have obtained a simple spin-
glass model with frustration. It is easy to handle,
and reproduces many experimental features of a

1.0

0.5—

0.0 0.5 1.0

FIG. 2. The spin-glass magnetization m as a function
of the external field k, with e = 0.2 and K ' = 0.6 where
the units are such that J= 1. At h, there is a field-in-
duced transition to a state of higher magnetization.
The magnetization is convex on the left of h,

&
and con-

cave on the right; i.e., 5, acts as a point of inflection.

spin-glass'" "quite well. Probability distribu-
tions more general than $ and q equal, to + 1 will
be considered elsewhere. "
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Percolation is often used as a model for critical behavior of the sol-gel transition. A
three-dimensional kinetic model for gelation, similar to that of Manneville and de Seze,
is investigated with a Monte Carlo method. By looking at the ratios of the critical ampli-
tudes of the "susceptibility" (weight-average degree of polymerization) below and above
the percolation threshold, clear evidence is found that this model is neither in the univer-
sality class of standard percolation nor in that of classical (Flory-Stockmayer) theory.

PACS numbers: 82.35.+t, 05.70.Jk, 61.40.Km, 64.60.Fr

The sol-gel transition' is apparently more com-
plicated than predicted by the current theories.
This was first shown in 1976 when Stauffer' and
de Gennes' suggested that percolation on a three-
dimensional (3D) lattice is a good model for criti-
cal phenomena in gelation, since the classical the-
ory of Flory' and Stockmayer' is identical to
percolation on a Cayley tree. As in the case of
coagulation' or some other kinetic percolation
processes' there has been mounting criticism'
that standard percolation does not consider the
growth process of the gelation, i.e. , the kinetics.
It has been suggested that a kinetic gelation model
might not even be in the universality class of
standard percolation. '

In this Letter we present Monte Carlo evidence
that indeed a rather realistic growth model for
the sol-gel transition, similar to that of Manne-
ville and de Seze, ' is not in the same universality
class as percolation.

We want to describe a model of gelation for the
irreversible free-radical copolymerization proc-

ess. Here the sol consists of small monomers
and the gelation is initiated by radicals. The radi-
cals saturate, opening up a double bond of a mono-
mer and leaving one bond in the monomer un-
saturated. This creates a new radical that con-
tinues the growth process. We use L &I &L sim-
ple cubic lattices with periodic boundary condi-
tions containing a concentration &, of bifunctional
sites and a concentration 1 —&, of tetrafunctional
sites. (A bifunctional or tetrafunctional site can
have at most two or four occupied bonds incident,
respectively. ) The initialization is performed by
randomly occupying a fraction c~ of bonds. For
simplicity, no adjacent bonds are allowed to be
occupied. Chemically, an occupied bond means
a broken double bond between carbon atoms. The
two free ends of an occupied bond are the radicals
or "active centers. "

Now, the growth process is
performed as follows: We randomly choose an
active center and an adjacent bond of this center.
If the other end of this bond is not forbidden, i.e. ,
is not a bifunctional or tetrafunctional site al-
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