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Two-Mode Structure of Alfven Surface Waves
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The Alfven surface waves propagating along a viscous conducting fluid-vacuum inter-
face have been studied. It is found that besides the "ordinary" Alfven surface waves,
modified by viscosity effects, the interface can support a second mode which is the over-
damped solution of the dispersion equation. The possibility of observation of a two-mode
structure of Alfven surface waves in the laboratory and in the solar coronal plasmas is
discussed.

PACS numbers: 52.35.Bj

In this Letter we study the viscosity effects on
Alfven surface waves (ASW) propagating along a
plane interface between vacuum and a conducting
viscous medium. We find that the interface can
support two qualitatively distinct modes when the
parameter V (V =—v,~/p„u A, ) is greater than a
critical value V, (ct), where v„p„, and v A, are
respectively the coefficient of viscosity, density,
and bulk Alfven speed in the conducting medium 1,
and n Bo2/Bo, is the interface parameter meas-
uring the discontinuity of the magnetic field
strength across the interface. One of the modes
is the "ordinary" ASW modified by viscosity ef-
fects, but the second mode is the overdamped so-
lution of the dispersion equation arising due to
the presence of a magnetic field along the surface
of a viscous conducting fiuid. The two-mode
structure of ASW is very similar to the two-mode
structure of capillary surface waves arising along
the liquid surface in the presence of surface ten-
sion and shear viscosity. " This similarity could
be due to the fact that the rigidity induced by the
magnetic field in the surface of the conducting
fluid acts like surface tension.

We discuss the dispersion relation by consider-
ing the frequency to be real and the wave vector
complex with a hope that the two modes of ASW

can be observed in the laboratory by use of the
spatial methods of experimental technique. '
Moreover, the imaginary part of the propagation
constant gives us an estimate of the distance over
which the "ordinary" ASW is damped by viscosity.
These results can have relevance to the study of
ASW in the heating of solar coronal plasma,
where it has been noted' recently that in the pro-
cess of resonant absorption of ASW viscosity
dominates over the kinetic effects.

In the magnetohydrodynamic approximation the
linearized equations governing the electromag-
netic and hydrodynamic properties of an incom-

pressible viscous fluid of mass density p, embed-
ded in an external magnetic field Bp are

poev/Bt = —Vp +(4v) (V xb) xB yvV2v,

8 b/Bt = V x (v x B ),

(2)

(3)

(4)v 5=0,

where v is the coefficient of viscosity, v, p, and
5 are the perturbed fluid velocity, pressure,
and magnetic field, respectively.

For small perturbations of the form fEX,y, s, t)
~f (x) expi(ly +ks - u&t) and B,=By, Etls. (I)-(4)
can be reduced to give the system of differential
equations in v„and v, as

kDy'-~')u„+iK'(p' —~')u, =O,

k(D2-T')u„+iD(D'- T')u. =0,

(5)

(6)

v„, =A,e '~" +A e ", x&0,

v =A e'2" +A e " x&0

(6)

(9)

where the A 's are arbitrary constants. Substitut-
ing Eqs. (8) and (9) in Eq. (5) and solving, we get

v„=E,e ""-(iA,k/K)e ", x&0,

u~ =E,e'2" +(iA,k/K)e ", x &0,

(lo)

where the E 's are arbitrary functions of the A 's.

where D =d/dx,

T =K —(zpo/p(d)((d —k u A ) &

K' =0'+l', and v A is the Alfven wave speed. Equa-
tions (5) and (6) can be reduced to give

(D'- ~') (D' -K')u„=O.

Consider two fluid media 1 and 2 filling the half
spaces x &0 and x &0, respectively. Solving Eq.
(7) we get
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To represent surface waves we also impose the
conditions

He(T, 2) & 0, Re(E') &0. (12)

By use of results (8)—(11) in Eqs. (1)-(4) the field
components in media 1 and 2 can be calculated.
The dispersion relation is obtained by applying
the four boundary conditions that (i) normal veloc-

ity, (ii) tangential velocity, (iii) tangential viscous
stress, and (iv) total pressure are continuous
across the boundary. It is to be mentioned that
in calculation of the total pressure on each side
of the boundary, the coefficients of &, and E2
vanish and the remaining three conditions (i)-
(iii) can be expressed in terms of v„, and v„,.
Matching the boundary conditions at x =0, we get
the dispersion relation as

i[p»(&u'-u'v„, ') + po2(~' —k'vA, ')][p»(&u'-u'v„, ')(T, -K) +po2(&u' —0'v»')(7, -K)]
+ ~K~»(~ ~ Ay )~02(~ ~ vA2 ) 4K &(&g —v2)[P»(R —k vAq )(T2 —K) —po2((d —k vA2 )(T2 -K)]

+~4K &u'(v, —v,)'(z, -K)(~, -K) =0. (13)

The structure of Eq. (13) suggests that I can be taken to be zero without effecting the qualitative na, -
ture of the results. When we consider the plasma-vacuum interface, Eq. (13) with I =p» =v, =0 then
reduces to

2k 2 4V 2cO2k4

O'TPpg Ppg pp, k —1

It is interesting to see that when the magnetic field is equal to zero, Eq. (].4) reduces to

1+(i4k'v, /vp„) +4(k'v, '/&u'p„')(T, /0 —].) =0,

(14)

which is the dispersion relation for the surface waves at the viscous-fluid-vacuum interface when sur-
face tension is zero. '

We also note that in the limit v, -0 Eq. (14) gives

(16)

the phase velocity of the ASW at the plasma-vacuum interface. 4

Normalizing Eq. (14) we get

(x' —l)2 —n2(x' —1) +i4v (x' —1) +4v2T, —4v2 =0,

where

(17)

kv» P»'UA, k V

Squaring the irrational equation (17) after bringing the term with T, to the right-hand side and taking
out a common factor (x' —1) which represents a bulk mode, we get

x'+x'(- 3 —2n'+8iV) +x'[(1+n')[(1+n') +2(1 —4iV)] —8V(i +3V)j

+(1+n')[- 1 —n'+8V(i +V)]+ 16V'(1 —iV) =0. (18)

Equation (18), with the substitution y =x', reduces
to a cubic equation iny, the roots of which are
given by the usual formulas. ' Taking x =+ ~y, we
get all the six roots of Eq. (18). To avoid spuri-
ous roots due to squaring we take only those roots
which satisfy Eq. (17). Further, to represent a
surface mode, the roots should also satisfy the
condition Re(7, ) &0, Re(k) &0.

Taking k =k„+ik;, the values of k„and k; can be
obtained from the calculated values of x. The val-
ues thus obtained in units of v/v„, are shown in
Figs. 1(a), 1(b), a.nd 1(c) as a. function of V for

n =0.2, 1.0, and 1.5, respectively. These fig-
ures show that there is only one surface-wave
mode which is the ASW modified by viscosity for
low values of V. As V increases a second mode
appears at a critical value of V, say V,(n). V, (n)
is an increasing function of & and approaches the
overdamped solution, for which k; & k„, at V =V,.
Thus for values of V&t/', there is only one ordi-
nary ASW modewhich exists even in the absence
of viscosity as the pure ASW mode, for the re-
gion V, & V & V, there are two damped propagating
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modes, and for V& V, there is one damped propa-
gating mode and one overdamped mode. Other
interesting features are that for the values of the
parameter V= V, both the propagating and damp-
ing constants of ordinary ASW show a sharp maxi-
mum peak and for low values of the interface pa-
rameter &, the value of V, at which the second
mode sets in can become very small.

In the limit V«1, Eq. (17), on neglect of terms
of order higher than V, becomes

x' =1+~' —4iV,
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which on assumption 0& «k„gives
2V

(] + ~2)3/2 U

1 QP (d

(1 +& ) DAz VAS

(19)

0.8

o 0.6

a =1,0 The approximate solutions in Eq. (19) are correct
for values of o.'- 1. Figure 1(b) and l(c) show 0„
as a constant and 0& as a linear function of V for
values of V&0.3 and 0.5, respectively. Figure
1(a), however, shows that the curves for 0, and
k„deviate from Eq. (19) even when V&0.1. A
criterion for propagation of ASW, deduced from
Eq. (19) by taking k; & k„, is given as

0.4
p,~/po, & (Bo,'+ Bo,')/8mpo, . (20)

/
2— /'

I
g k.

01
0

I I

y& 0.5
I I

y 10
V

1.5

'I. O

0.8—

3

0
e 06
C

C

k„1

0.4

0.2—
i1

0& I I

0 05 V 1.0 Vo 1.5
V

FIG. 1. Variation of k„and 0; with the parameter
y for(a)n'=02 (b)o. '=10 (c) n =15

An estimate of the relevant range of V to study
the two-mode structure of ASW in the laboratory
can be made by considering a highly viscous and
conducting liquid, say mercury. The value of V
for a frequency of 800 Hz (~ =5&10'/sec) in a
magnetic field &, is given by V = (975 6')/&, '.
Hence in a magnetic field of 500 G, V=3.9&10 '.
From Fig. 1(b) for ot' =1.0, we find that for this
value there ean be only one mode. However,
since V is inversely proportional to the square of
the magnetic field, by lowering the magnetic field
to say 40 G, we find V =0.61. For this value,
the second mode can very well be observed. Re-
cently Sohl, Miyano, and Ketterson' have devel-
oped a technique to study capillary-wave propaga-
tion. The wide dynamic range of their technique
allows them to observe highly damped waves on
viscous fluids conveniently. The two-mode struc-
ture of ASW can be observed by use of a similar
technique.

When we consider the situations in coronal
loops, the field-aligned viscosity" is v/p =6.9
&&10'T5/'/n cm'/sec, where T is the temperature
and n is the particle density. Hence for the tem-
peratures of the order 10'-10' K with a particle
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density of 10'/cm', v/p =2.181x10"-6.9x10"
cm'/sec. For vA, =10' cm/sec and v =1/sec, V
=2.18&10 '-6.9&10 '. Considering the fact that
V is very low, the probability that the second
mode of ASW can exist along the coronal loops is
less. However, our results assume p»/p»=g =0,
whereas for coronal loops q is' in the range 2 —3
and o. is small. Since V, is a sensitive function
of the interface parameter , a further study of
functional dependence of V, on q is necessary to
arrive at any definite conclusion.

Finally, we make an estimate of the damping
of ordinary ASW in coronal loops. If damping is
very rapid, the ASW absorption may not be a
possibility. For V= 0.06, from Fig. 1(a), we have

k„,=0.935~/Uz„k;, =0.065~/UA„which gives
X„,=2~/k„, =6.7x10' km, A.;, =9.67x10' km, for
vA, =10' cm/sec and &u = 1/sec. Thus ordinary
ASW can propagate to a distance of = 9.67& 10' km
which is 14 times the propagation wavelength be-
fore being damped.
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