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Threshold Law for Electron-Atom Impact Ionization
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The threshold law for electron-atom ionization is derived on the basis of the Coulomb-
dipole theory T.he result is a modulated quasilinear law for the yield: g ~E(lnE) ~[1
+ C sin(nlnE+ p)]. The derivation depends on a more accurate description of the dipole
moment seen by the outer electron as the distance of the innejt. electron from the nucleus.
The derivation also implies C=&, and it also suggests that n is large. The same law
also applies to positron-atom impact ionization.

PACS numbers: 34.80.Dp, 32.80.Fb

Impact ionization is one of the most fundamental
ongoing problems of nonrelativistic quantum
mechanics. I would like to present here a deriva-
tion of the expl. icit form of the threshold law for
electron impact ionization of atoms (i.e., neutral
targets). After a long period of gestation' we
were led to the conclusion that the threshol. d is
dominated by the Coulomb-dipole region'. i.e. ,
the region where the outgoing electrons have very
different energies, corresponding to the inner
(slower) electron seeing the charge of the residual.
ion directi. y whereas the outer (faster) electron
sees the dipole potential formed by the residual
ion and the inner electron. This led to the con-
jecture,"which I emphasize was heretofore not
a derived result, that the threshold law (i.e. ,
the yield of positive ions) should be of the form
of a modulated linear law (E is the available en-
ergy after ionization) g ~EM(E) Very rece. ntly
I have derived that formula on the basis of a
Coulomb-dipole Ansatz for the final-state wave
function. The dipole function used therein' had
a dipole moment which was taken as constant,
whereas in actual fact the inner electron is not
stationary; thus the dipole moment seen by the
outer electron should be a function of the inner
electron's coordinate. In the present Letter I
shall. therefore make the important generalization
of using a dipole function whose moment is the
dipole moment formed by inner electron and the
nucleus. This will have a smal. l but important
quantitative alteration in the final result. But
first a few preliminaries.

The yield of positive ions is given by the ex-
pression

g = fiiii 6(E —0 —0 )d k, d'0 . (1)

In Eq. (2) the matrix element% is to be taken in
final-state form,

m=(a, ~v, ~4,. ).

In what follows I shall confine myself to S-wave
scattering in the electron-hydrogen system and

specifically the two-dimensional model' in the
dipole approximation (Rydberg units throughout),

V, = —2/r, +2/(r, +r, )

= —2r,/r, ', r, & 2r„
with hydrogen in its ground state in the initial-
state function

(4)

[Our argument also applies to two-electron photo-
detachment (of H ) in which case 4, is the ground-
state H wave function, V; would be, say, the
dipole length operator, and the final state 4f
would consist of only one partial wave. Cf. after
Eq. (19).]

None of these circumscriptions should affect
the form of the threshold law. ' That will be de-
termined by the final-state wave 4f which in
principle should be an appropriate, exact solu-
tion of the Schrodinger equation. The essence of
all these arguments" is that for the purposes of
deriving g(E) the essential part of 4f is given by

(5)
where I" "' is a correctly normalized zero-energy
Coulomb wave describing the inner electron:

y'(c) y -1/2fr I/2j ((Br )1/2) ]
02 ~0

[The inequality r, ~ 2r, represents "authentically
greater than" (i.e. , larger than by about a factor
2). gg also contains contributions from other re-
gions of configuration space, but I assume that
they contribute less to the threshold law than what
we do include. ]

The outer electron is described by a dipol. e wave
E(d& (r )

= ri(k, )r, '/'[A J, (k,r, ) +&N, „(k,r, )] . (7)
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ln Eqs. (6) and (7) the J' and I{I are Bessel and
Neumann functions, and in the l.atter they are of
imaginary order in, where

(5
~ )1/2

and b is the dipol. e moment seen by the outer
electron. E'"' satisfies

d' b
, +,+k,' [r,Z{"&(r,)]=O.

E"'(r,)=—q(k )r ' 'sin(o. lnr, +y). (lo)

The phase Q depends logarithmically on k, where
k,' = ~ is the energy of the outer electron:

P = n in&
' '+ const.

!(11)

Asymptotically I '"' has the normalization of a
plane wave,

lim E"'(r,) =(k,r, )"'sin(k,r, + const),
1

as is demanded by Eq. (1). As long as k, ' «b/r',
F'"' reduces to

For the purposes of this derivation, the normali-
zation q(k, ) of the dipole wave' reduces to that of
a pure Coulomb wave:

q(k, ) =k (12)

The essence of this present (new) derivation is
to take into account the fact that the dipole mo-
ment seen by the outer electron is precisely the
distance of the inner electron from the nucleus,
l.e.

~

(8b)

Under these circumstances, 4f can be written

(5b)

I' '"' is now a highly nonseparabl. e function of r,
and r„one can nevertheless carry out the cor-
responding matrix element to leading order in
k and ultimately derive the threshold law explicit-
ly. Briefly, substituting all functions into (2),
with k, =1 in Eq. (4), one finds

Kc{:(k,k, ) '~'J, dr, f ' dr, si n[n(r, )l nkr, + c,]r, '~'sinr, r, '~'J, ((8r,)'I')p, (r,). (2b)

R is the lower limit of the r, coordinate below which (5b) is not an accurate approximation to 4'&, I
shall discuss it below. Interchanging the order of integration in (2b),

we find, writing K= (k,k, )' 'I,

I= f e "r' 'J,((8r)' ')cos[o(r)ink, ]S(r)dr+ J e "r' 'J,((8r)' ')sin[n(r)ink, ]e(r)dr, (14a)

(14c)

(15a)
Note that this differs slightly from our previous conjecture" of a modulated l.inear law. Of particu-

lar interest is the fact that the derivation yields an approximate reciprocal relationship between C and
a(R),

where

[a{r){m+c,]Idr, . ,( S(r)f " sinr, I sin
(14b)

The object here is to find the leading order dependence in (14a) on k» note that Eqs. (14b) are inde-
pendent of k» and thus we can integrate (14a) by parts, by taking dV=r ' 'sin(r'~'Ink, )dr, to obtain

I= (ink, ) '[Csin(R' ' ink, )+ C cos(R' 'ink, )]+O((ink) ') .

Substitution of this into K [above (14a)] gives

ink, (im, )2 (2c)

and substituting K in Eq. (1) and carrying out the integrations over k, and k, which are straightforward,
we obtain the final result, the threshold law for electron-atom impact ionization,

g(E) ~ [Ej(lnE)']$1+ C sin[a(R)lnE+ p]]. .

~(R)=C '=R (16)
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The parameter R can be estimated by assessing where 4'» Eq. (5b), becomes an accurate solution

of the Schrodinger equation. Defining and working out

[H E-]+& -=54 &,

we find to leading order

M, (lnr, )' —4(2r, )'~' lnr, cot(a. lnr, )tan[(ar, )' ' —3m/4]
4r, (17a.)

The condition
~
N z/4'~ ~ «1, away from the zeros

of 4'» leads to very broad limits on (r,);„=R:
Vs R'~'s 160. 17b( )

These limits encompass the value o.(R) —=R' '= 42
found in the recent experiment of Donahue et al. '
when fitted by our modulated linear law." It wil. l

be of interest to see what happens when their data
are fitted by g of Eq. (15). Of more present sig-
nificance is the fact that even with the modulated
linear-law fit, Donahue et al. ,' find C=0.045,
which agrees with (16) to better than a factor of
2'I

For completeness we note that (15a) only ap-
plies to a single partial wave (e.g. , two-electron
photodetachment); in impact ionization (15a)
must be generalized to

g, (E)~ [E/(lnE)'] [1+Q~C~ sin(a~ lnE+ p~)].
(15b)

The threshold law is the same for each partial
wave (L), because any finite partial wave will be
eventually dominated by the attractive dipole po-
tential

—[R~ —L(L + 1)]limV~r = 0

y &BL

However, this does suggest that the reciprocal
relation between CL, and o.~ will be somewhat
altered:

n~ = [R~ —L(L + 1) —g ]' '; C~ =R~

It is interesting that the fit of the experiment of
Donahue et al. , which measures two-electron
photodetachment (L=1), deviates from reciprocity
in the direction of (19).

I will discuss only briefly the implications of
this result —in particul. ar, the deviation from the
Wannier l.aw' or its subsequent WEB rederiva-
tions." I have recently discussed this anew
elsewhere' in connection with recent work of
Bottcher" and the new experimental results of
Donahue et a/. ' In addition to what was stated
above, the latter' shows that the yield curve can
be at least as well fitted by a modulated linear

law as by E' "'. (The confidence level takes into
account the number of parameters in any assumed
form of law. ) Bottcher's latest time-dependent
numerical calculations" reveal. that the final
state is dominated by unequal-energy events,
which include ionizing collisions importantly.
The dominance of such unequal-energy events is
the most salient prediction of the Coulomb-dipole
theory' beyond the form of the threshold law it-
self. Mention should also be made of the experi-
ment by Cvejanovic and Read, "which previously
provided the greatest experimental support of the
Wannier theory. ' However, as has been exhibited,
most convincingly by Lineberger, Hotop, and
Patterson et al." in ordinary single-electron
photodetachment, the correct (in that case Wig-
ner) threshold law may only be valid within as
little as 5 meV of threshold. In that sense the
new experiment of Donahue et al. ' provides an
important step in lowering the experimental
range.

Finally, I have argued elsewhere' that the
Coulomb-dipole threshold law should also apply
to positron-atom impact ionization. In view of
the present analysis, the modulated linear law
given there should be changed to the form of Eq.
(15b). But the qualitative difference from the
recent result of Klar" (CK&„~Em'6'), derived
on the basis (mutatis mutandis) of a Wannier ap-
proach, persists. The yield of the latter, being
smaller even than phase space (g pz„, ~„,. ~E'),
provides a crucible for the underlying assumption
of the Wannier theory: the validity of the quasi-
ergodic hypothesis. "
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Fractional Mode Numbers in avy Taylor Vortex Flow
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Spectral power and phase measurements are presented which demonstrate the existence
of a wavy Taylor vortex-flow state with a mode number rn = &. The mode is periodically
continued around the annulus by a phase anomaly which is stationary in the laboratory
frame. It is also shown that wavy Taylor vortex flow results in an increase (decrease) of
the Taylor vortex-pair width near the center (ends) of the apparatus.

PACS numbers: 47.20.+m, 47.35.+i

Fluid flow experiments often reveal that bound-
ary conditions result in spatially periodic veloc-
ity fields with an integer number of wavelengths
filling the container. The most extensive exam-
ple is perhaps based on the study by Coles' of the
Couette-Taylor system of a fluid contained be-
tween two concentric cylinders with the inner one
rotating. In that case, the flow could be described
by the (integer) number P of Taylor vortices fill-
ing the system in the axial direction and the (in-
teger) number rn of wavelengths of a wavy mode
traveling azimuthally. We report in this Letter
measurements on a wavy Taylor vortex-flow
(WVF) mode with noninteger mode number m =2.
The existence of fractional mode numbers should
be of importance in classifying the various routes
to nonperiodic, or turbulent, flow. The classifi-
cation of WVF states and of modulated wavy vor-
tex-flow (MWVF) states by Gorman, Swinney,
and Band' and by Rand' does not include low-sym-
metry modes such as ours.

Our apparatu, ~ consists of two concentric cylin-
ders, with the inner one rotating and the outer
one stationary. The inner radius was r,. = 3.118

cm, and the radius ratio rl= r, /r, wa—s 0.893. The
upper and lower boundaries were rigid and non-
rotating. We studied the aspect ratio I.=H/d-
= 53.9 (H = column height and d = rp -r,.). The tem-
perature was constant and uniform to + 5~ 10 ''C,
and the cylinder speed was controlled accurately
by a frequency synthesizer. The fluid was a 30%%up

solution of glycerol in water by volume, with
0.6%%up by volume of a "Kalliroscope" suspension
added for flow visualization. Two independent
light reflectance probes were used to study the
time dependence of the visualized flow. Each
probe consisted of a normally incident 2-mW He-
Ne laser beam and a photovoltaic detector. The
signals were sampled simultaneously and both
probes could be translated vertically with a reso-
lution of 13 p. m.

Upon increase of the angular speed 0 of the in-
ner cylinder, and thus the Reynolds number R,
a transition occurred at R =R, from azimuthal
flow (except near the ends) to a primary-mode'
Taylor vortex-flow (TVF) state consisting of to-
roidal vortices with an axial wavelength ~ = 2.0.
(All lengths will be reduced by the gap d. ) For
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