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suming evaluation of higher-order electron-elec-
tron interaction effects. Thus, if, in the future,
the error ranges in the experimental results for
M, and 6 can be reduced substantially below the
present ranges,”” combined theoretical and ex-
perimental investigations of & have the potential
of providing an accurate choice of sin®dy. There
seems to be significant hope for this since the re-
cent experimental investigation® of 6 in thallium
has reduced the experimental error range by al-
most 60% as compared with earlier measure-
ments.'*
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Bistable Limit Cycles in a Model for a Laser with a Saturable Absorber
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Sufficiently long population decay times and sufficiently short dipole decay times in a
single-mode model for a laser with saturable absorber permit coexistence of soft-excited
oscillations and @ switching (hard-mode sustained relaxation oscillations).

PACS numbers: 42.55.-f, 05.70.Ln, 42.60.-v

Systems driven away from equilibrium can ex-
hibit spatial and/or temporal patterns which are
dissipative structures,' thus leading to synergetic
behavior.? The new states can be induced either
softly as in a second-order, continuous phase
transition or through hard excitation as in a first-
order, discontinuous case. For the latter pos-
sibility where the transition is a consequence of
a finite-amplitude disturbance we speak of sub-
critical instability or of transition with metasta-
bility. A specific case of nonequilibrium transi-
tions is the appearance of multiple steady states
which in laser physics permits optical bistabil-

ity.® Here we present evidence of multiplicity of

oscillatory states with coexistence of soft- and
hard-induced limit cycles in a laser with a sat-
urable absorber.

In a recent Letter? evidence was given for the
onset of @ switching®® in a model for a single-
mode laser with a saturable absorber.® Such a
limit cycle appears as a hard-mode sustained
relaxation oscillation for sufficiently long popula-
tion decay times and sufficiently short dipole de-
cay times. The model considered in Ref. 4 did
not account for the phases in the electric and
polarization fields. However, because of the
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chosen range of parameter values the phases
were not expected to play a significant role. In
the present Letter we report the results found for
a range of parameter values where a nontrivial
role may be played by the phases as has been al-
ready emphasized by several authors.”® Figure
1 illustrates the expected behavior as predicted
by linear stability analysis of the nonlasing steady
state in the model discussed in Ref. 3 or 4.

The problem refers to the following dimension-
less equations:

a, =pl-a, +Ap, +7,(1-C)p,], (1a)
a; =pl—a; +Ap; +r,(1-C¥,], (1b)
p,=a,(1-d)-p,, (1e)
bi=a;(1-d)~-p;, (1d)
b,=a,(1-3)-7p,, (le)
pi=a,(1-3)-7p,, (1)
d=w(-d+a,p, +a;p;), (1g)
d=w(-r,d+a,b, +a,p;). (1h)

a, and a; denote the real and imaginary parts of
the dimensionless electric field. p, and p; ac-

count for the polarization of the active atoms.

d -1 is the normalized emitter’s atomic inver-
sion. Barred quantities refer to the absorber.

A
=C
151
ANL
// /Aos
104 =
/
- |
5 / !
| |
'. l L c
C. 5 C,to P 15 20

FIG. 1. Boundaries of stability of the emissionless
steady state of (1) for p = 0.1, w = 0.01, »;= 0.4, and
r,=1. A= C 1is the line of exchange of stabilities (lin-
ear theory). ANV is the line of hard transition from
the emissionless state to the steady lasing state. A°S
is the line of overstability (linear theory) where for
A>A° and C > C,, we expect an oscillatory lasing
state. Past P, to the right, there is coexistence of
soft- and hard-mode excited oscillatory states.
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p is the ratio of the photon decay rate in the cav-
ity to the dipole decay rate. #, is the ratio of the
two dipole decay rates (absorber to emitter). 7,
is the ratio of the two population decay rates (ab-
sorber to emitter) and w is the ratio of the two
decay rates of the emitter (population to dipole).
A and C are essentially the pumping rates of the
emitter and absorber, respectively.

. As in Ref. 4, we set 7,=1, i.e., we take the
population decay time or longitudinal relaxation
time, T, the same for both active and passive
atoms, which is consistent with the assumption
of resonance between the emitting and absorbing
transitions. We fix w=0.01, i.e., we take the
dipole decay time or transverse relaxation time,
T,, to be two orders of magnitude smaller than
T,. We also take p=0.1 and thus w<p. Note that
Eqgs. (1) provide nontrivial phase effects, i.e.,
nonvanishing values of a; and p;, only when the
atomic system is prepared in a coherent super-
position state at the initial time.

The steady solutions of (1) are either the emis-
sionless state a, =a; =0 or a nonlinear steady
emission state with a,?+a;2=X%#0, where X is
any of the positive roots of X*+X?%1 ~A +7,C)
+7,(CA)=0. Note that we only have nonvanishing
positive roots for C>C,,=(1-7,)"! and that be-
low a certain value of A, called AN, there is
only the solution X =0. Thus AN" (see Fig. 1)
corresponds to the appearance of four solutions
in the algebraic equation. We also have d =X2/
(1+X?), d=X*/(r,+X?), p, =a,/(1+X?), p, =a;/
(1+x%), p, =a,/(r,+X?), and p, =a; /(r, +X?).

The emissionless state is unstable to infinitesi-
mal disturbances when

A=C (2a)

or

1+7,+p(1+7,C) _
=A%,
plp+1)

Along A =C there is exchange of stabilities and a
transition to the steady lasing state (X2+# 0) is ex-~
pected. This is a soft transition for C <C,,
whereas there is a finite-amplitude instability,
i.e., a hard transition from X=0to X#0, atA
=AN'for C>C,,. AtC=C,=(p+7r,)/p(1=7)),
where the two equalities (2a) and (2b) hold, and
all along A =A® there is overstability, i.e., a
soft Hopf bifurcation with a pair of complex semi-
simple eigenvalues both of multiplicity two. Their
imaginary part is u,, where

,U~02=7’1[DC(1 -‘71) - (p +71)] /(1 +p)'

A=(p+7)) (2b)
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We here restrict consideration to the region A *
<AMNL (see Fig. 1).

At A=A two stable limit cycles bifurcate
from the emissionless state. We have construct-
ed these two coexisting limit cycles of (1) using a
method due to Kielhtfer.® One of the limit cycles
(LC1) has constant phase and corresponds to the
solution reported some time ago by Antoranz and
Velarde.!!! Thus LC1 is the same whether or
not we consider the phases. The other cycle
(LC2), already found by Dembinski et al.,® has
linearly growing phase and does not appear in the
system of five equations studied by Antoranz,
Gea, and Velarde.* That LC1 and LC2 both
branch stably has been verified analytically by
means of Floquet’s theory'? and numerically by
using the Poincaré map. Thus our results com-
plete the picture recently sketched by Erneux
and Mandel.'®

Figure 2 depicts the results found for some il-
lustrative values of the parameters. With the
Poincaré map we have been able to locate the
points where the two limit cycles become un-
stable. Curiously enough both LC1 and LC2
bifurcate to unstable tori (Q, and Q,, respective-
ly). For LC2 this has been established by means
of the time derivative expansion (singular per-
turbation) procedure.'** As we know'? the co-
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5

FIG. 2. Bifurcation diagram of (1) at p = 0.1, w=0.01,
r1=0.4, v,=1, and C= 16 (see Fig. 1). Solid and bro-
ken lines indicate stable and unstable solutions, respec-
tively. S denotes steady states. LCQ bifurcates sub-
critically at A =A, = 14.2823. LC1 and LC2 bifurcate
softly from the emissionless state at A =A°%= 9.7272.
For A° < A< A;=11.3466 there is bistability of softly
excited oscillations. For A;<A<A,=11.72 there is
bistability of a softly excited oscillation and the hard
excited mode (@ switching). The @ switching is the only
available oscillatory state in the region A,< A<A,.

ordinates in the Poincaré map of the correspond-
ing fixed point, we have constructed the bifur-
cated limit cycle when the fixed point becomes
unstable. This limit cycle branches to the wrong
side, i.e., bifurcates unstably, in agreement with
the numerical evidence obtained by direct com-
puter integration of (1). The latter refers to the
observed jump from the fixed point to an out-
wardly spiraling orbit in the Poincaré map. A
similar behavior appears in the Poincaré map of
LC1 although for LC1 we have not been able to
establish this property analytically.
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FIG. 3. (a) The @ switching in the phase space (elec-
tric field vs polarization). (b) Time evolution, during
a period, of population inversions (emitter, 1—d; ab-
sorber, d—1). For illustration, the solid line accounts
for the pulse (not to scale here). Values of 1 (respec-
tively, —1) account for all atoms in the excited (respec-
tively, ground) state. Units are arbitrary.
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TABLE I. Characteristics of the @ -switching oscil-
lation (pulse intensity, time period) for p =0.1, w=0.01,
71=0.4, v,=1, and C=16. Units are in accordance with
the dimensionalization used to obtain (1).

Period of Pulse intensity
A oscillation (maximum)
11.346 605 39
11.40 591 40
11.5 550 42
12 445 52
12.5 368 61
13 327 70
13.5 272 76
14 234 79

As in Ref. 4 we have also studied the stability
of the nonlinear steady lasing state. Here, how-
ever, due consideration is given to the phases.
With (1) we again find that the upper nonlinear
steady state (X# 0) is unstable for A <A, and
stable past A, , where the actual value of A, de-
pends on the parameters in the problem. This
value, A,, is exactly the same as the value found
with the system of equations used in Ref. 4. As
the problem discussed in Ref. 4 is the straight-
forward reduction of (1) when the phases are dis-
regarded, the latter play no relevant role in the
stability analysis of the nonlinear finite-ampli-
tude steady state. They play, however, an in-
teresting role in the evolution of the emissionless
state as they permit the appearance of LC2.

Figures 3(a) and 3(b) depict the @ switching
found for illustrative values of the parameters.
Table I accounts for numerical estimates of the
period and intensity of the current at different
values of the pumping rate A. A genuine property
of this sustained relaxation oscillation is that the
pulse peak intensity increases with increasing
pumping rate which is the opposite behavior to
the result found in Ref. 4 where C <C®. There
the @ switching was the only available oscillatory
state of the system. Note also that at d=1 the
absorber becomes transparent with equal num-
bers of atoms in the excited and ground states.

It actually becomes active (d > 1) for a short in-
terval during the rising of the pulse, and cooper-
ates with the emitter. Moreover this transition
is achieved through an oscillatory transient and
the maximum is reached before the minimum in
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the emitter’s curve is attained.

In conclusion, the single-mode model® for a
laser with a saturable absorber permits the co-
existence of limit-cycle behavior not only be-
tween two softly excited oscillations (LC1 and
LC2 in the region A® <A <A, of Fig. 2) but also
between soft- and hard-excited oscillations (LC1
and LCQ in the region A, <A <A,). AtA<A,,
LCQ disappears while at A = A,, LC2 disappears
to yield the unsfable torus Q,. Thus we expect
that this torus emanating from LC2 dies at LCQ.
The coexistence of LC1 and LCQ is a common
feature to (1) and the problem without the phases.?
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