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Localization and Spectral Singularities in Random Chains
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This paper reports consideration of the Hamiltonian for tight binding in one dimension
with off-diagonal disorder of two forms, corresponding to Dyson's types I and II. The
density of states and localization function at the center of the band are found by perturba-
tion theory and a scaling argument. The distinction between the two types of disorder is
clearly drawn, and new singularities in the Green's function pertinent to the problem of
random classical diffusion are predicted.

PACS numbers: 71.55.Jv, 05.40.+j, 63.50.+x

The dynamic properties of random chains have
been of interest since Dyson' calculated the den-
sity of states for a model of phonons in a dis-
ordered chain. More recently there has been ex-
tensive work on the mathematically related prob-
lem of classical diffusion in a random chain. ' Of
particular interest is the fact that disorder leads
to singularities in. the density of states different
from those of homogeneous systems. Dyson
found such singularities for a soluble class of
models with a form of disorder he dubbed "type
I." Quite different singularities have recently

bee n found by Alexander e I; al. ' for a form of dis-
order (type II) superficially similar. Hitherto
the reasons for such different behaviors have
remained relatively obscure. I shall show how

the singular behaviors found follow quite simply
once the localization properties of the exeitations
are considered. In one dimension localization
and spectral densities are closely related:
Thouless' showed that the localization function
A(E) and the integrated density of states are
essentially real and imaginary parts of the same
complex K vector. As well as illuminating the
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mechanism by which the singularities appear,
such considerations lead to prediction of singular
properties that have been neglected in the diffu-
sion problem and are needed for a full under-
standing of the approach to asymptotic behavior.

I consider the eigenstates of the Hamiltonian
for tight binding in one dimension with off diag-
onal -disorder,

with two cases corresponding to Dyson's types I
and II: Case I, "uncorrelated off-diagonal dis-
order. " Each J is an independent identically
distributed random variable. Case II, "spin
wave symmetry. " The J 's come in identical
pairs 4,„=4,„„.The J2„are independent. The
eigenstates satisfy

The significance of case II is clear if we elim-
inate odd sites in (2), finding for b„=a2„(-I)"

(E' —J2„—J2(„,) ) b„

This is the equation for the amplitude of a single
magnon in a random linear Heisenberg ferromag-
net. Within the random-phase approximation
these operators determine all the low-lying exci-
tations. If we write S=E', W„=22„', (3) can be
rewritten

sb„-= W„(b„„-b„) + 8„,(b„,—b ) .
Equation (4) is the Laplace transform of the
master equation for hopping over random barri-
ers. ' The equivalence of the model (1) to Dyson's
model as well as to the random spin--,' XF model
has been thoroughly discussed. 4

It is useful to reformulate equations of the form
(2) in terms of transfer matrices. ' A theorem
due to Ossedelec for the limiting properties of
the resulting product of random matrices leads
to the most rigorous statements of the scaling
theory of localization. ' ' For case I we have

f ~2n+2 / (22n )
2n+1 +2n-I

2 2
2n n+1. 2(n- I) ~n- 1 ' (3)

where

1 —E'/Z2„' -J2„,E/j „'

2n /~2n+1

for case II,
Notice that E = 0 is a special point: The matrices
all commute and the product is

= (-1)
E/g ~2(n-1) / 2n

] -E'/ j2„2 -EZ2(„,)/Z2„
f~~

II T,(, „(E=o)=I (10)

Let K»(E) be the logarithm of the eigenvalue of
the product T»T» 2

~ T,T, (or the correspond-
ing product of U's) whose modulus is greater than
or equal to 1. The phase of the imaginary part
must be determined by counting the number of
sign changes of the sequence of amplitudes gen-
erated by the matrices. ' The rate of exponential
decrease of eigenfunctions A(E) and the integrated
density of states are given by

where

f.=ZZI ——" .
n=l ( 2n+1

For large N the central limit theorem implies
that K»(E) is given by"

K, )((E = 0) = (2N) '
v, u +i 1(Ã, (12)

A(E) = lim Re(K,„(E)),1

N

I(E) =—lim Im(K, „(E)) .1

N
(9)

where 0„ is the variance of the random variable
ln4, and n is distributed normally with mean
zero and variance unity. Thus at E =0, X vanish-
es and the corresponding eigenstate should not
be exponentially localized. From (12) it should
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decay as t. J ." For case II, in contrast,

(I 0
II U („,) =(-1 "( / )

( 1)»/ (i3)

In this case A. also vanishes but the solutions of
the boundary-value problem do not increase at
all. The eigenstate should be extended. Ke see,
then, the first clear difference between the two
types of disorder: In both cases the rate of ex-
ponential increase of solutions of (3) vanishes
at E =0 but the nature of the products of the ma-
trices and the corresponding eigenstates are
quite different. The existence of such a "quasi-
mobility edge" in the models can be traced back
to a symmetry of the underlying physical model:
invariance under uniform translations for Dyson's
phonon model, and the existence of a uniform
steady-state distribution for the hopping problem.

The question is now posed: At E =0 a sequence
of random matrices commute; what is the effect
of adding to each a small noncomuting part?
There are two elements to the answer: the exis-
tence of limits (8) and (9) and a simple scaling
hypothesis. Suppose that for E —~, N —~, the
random variable Z, » =K,„(E)—w¹ has a prob-
ability distribution function (PDF) p that depends
on the two variables E and N through a single
variable, for example, I"=EN' ~ where y is to

be determined. Furthermore suppose we have
shown that for Y=O, i.e. , F. =O, Z» has a PDF
independent of

¹ For E fixed and N —~, i.e.,Y- , Ossedelec's theorem guarantees that
ReZ»/2N has a well-defined limit; we assume
the same to be true for ImZ»/2N, i.e. , an aver-
age density of states exists:

Rez2» - 2A (E)N +Z»',

ImZ, „-~ti(E) ——,'] 2N+Z„",

(14)

where Z„' and Z„"vanish with probability 1 as
N- ~. Equations (14) and (15) follow if for I'

(Z,„)= ni" ~ = nE ~N,

with a a complex constant. Thus from the scaling
hypothesis and identification of the scaling vari-
able we would predict an inverse localization
length and integrated density of states that vanish
as F~.

The question remains: How do we identify the
scaling variable? %e do this by perturbation
theory: by showing that the distribution of Z»
is determined by a single variable y of the two
variables F and N for small y. This will be
demonstrated explicitly for case II. To simplify
notation we take J, = J». The matrix product
and logarithm are expanded in powers of F.:

1V 1 0
ln (-1)» g V„»,&(E) =E

N Jo

-J,P„i/J„), (Q„ /J„'
2

P„(N —n)/J„' )
K2»(E) —71¹= -2E NP„J„2[(2ENQ„J„) -4E NP„J„J'i2. (18)

Thus to low order K»(E) —~Ni is a function of
E2NP„,J„', whose asymptotic distribution de-
pends on the distribution of variables J„. Consid-
er the following:

p(J}= (1 —n}/J", (19)
where 1 & n & —~, 0 & J& 1. By extension of the
usual central limit theorem properties of the dis-
tribution of g„-,J„'were proved. Three class-
es are distinguished.

(i} 1&n & —1: (J ') does not exist and asymptot-
ically

» J 2 N2/(1 n)y (20)

where y is a random variable independent of N.
{Its PDF is the Laplace transform of exp[-I'( —,'(1
+ n) s(1 n) 1'2

]j
(ii) -1 & n & -3: (J') exists but (J') does not,

and

(21)g; J„-'=N( J-')+N" &'-"&y',

where y' has a distribution independent of N.
(iii) n & -3, or more generally any distribution

for which (J') and (J') exist: The usual central
limit theorem applies, and

P"J '=N(J ')+N-" y"- (22)

(ii) K,„(E)

= 11Ni+iEN(J )+EN2~~' "' 2iy'+. . . , (23)

(iii) K»(E) = 11¹+iEN( J ')+EN 2 ,'iy "+.. . . —

where y" is normally distributed. For K»(E) we
find

(i) K,„(E)=vNi+EN~~2~i"'~&' "~ii Vy+. . . ,
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This identifies the three scaling variables as
g~(:~»& +»&j--o'-) j gP/»(~-o'& and EP/~2 respect

tively .(Nonfluctuating terms are absorbed into
the definition of Z» to make the scaling hypo-
thesis valid. ) Proceeding as outlined above we
predict that A. (E) vanishes as E ~ where

2(1 —n)
(i) -1&n &1,

3 —Q

—y) R' ~, the density of states p(s) diverges as

p(s) s ~, (i) 0&y&1,
-s 'l (ii), (iii) y & 0 .

(25)

In addition it is predicted from (24) that eigen-
states of (4) will be exponentially localized with
inverse localization length A. (s) -s where

=2 (iii) n & -3.
=-,'(1 —n), (ii) -3 &n &-1, (24)

~=(1 —y)/(2 —y), (I) 0&@&1,

(ii) -1&y&1,

(lil) y & —1 .
The result (24) is new but for case (iii) is ex-
pected by comparison to the results for weak
diagonal disorder. " For the integrated density
of states the---constant imaginary part dominates
for (ii) and (iii); the prediction is then that I(E)
——,

' is proportional to E ~ for (i) and to E for (ii)
and (iii). For case I a similar argument identi-
fies the scaling variable as N' 'o~/ In( E'). Com-
bined with (12) and a scaling hypothesis we find

~(E) - o,'/In(1/E2),

I(E) —,
'- o,'/[In(1/E') ]'.

(25)

Singularities (25) agree with those found by
Eggarter and Riedinger' by arguments more de-
tailed but similar in spirit, as well as Dyson's
solutions.

In conclusion I have demonstrated how a per-
turbation approach combined with a hypothesis
of scaling leads to definite predictions of the
singular spectra of the Hamiltonian (1) and clear
distinction of types I and II of disorder. The
singular forms have been verified by multiplying
chains of up to 10 000 random matrices and deter-
mining A(E) and I (E) numerically. A detailed
comparison will be presented elsewhere with a
fuller exposition of the present work. For the
uncorrelated case the results (25) agree with
previous work. " It is straightforward to ex-
tend the argument to cases where o~ does not
exist for which the singularities (25) will be
modified. For the "spin-wave" ease the singu-
larities in the density of states agree with those
of Alexander eI, al. ' In fact with the change of
variables 8 —E', W —4' and PDF p(W) =(1

This is a new and important qualification to the
statement that for negative y the asymptotic spec-
tral properties of the random chain are essen-
tially as for a uniform chain. Effective-medium
theories generally neglect such localization ef-
fects. Note that localization properties here do
not imply the absence of diffusion in the classical
process as they do in the equivalent quantum
problem, but they are necessary for a full under-
standing of the approach to the infinite-time limit;
a subject of current debate. "

It is a pleasure to thank J.-I. Pichard, S. Sark-
er, H. -J. Schulz, Ph. Nozieres, and D. Saint-
James for relevant conversations.

'F. J. Dyson, Phys. Rev. 92, 1331 (1953).
S. Alexander, J. Bernasconi, W. R. Schneider, and

R. Orbach, Rev. Mod. Phys. 53, 175 (1981), and refer-
ences therein.

D. J. Thouless, J. Phys. C 5, 77 (1972).
E. Lich and D. C. Mattis, Mathematical Physics in

One Dimension (Academic, New York, 1966).
5K. Ishii, Prog. Theor. Phys. , Suppl. 53, 77 (1973).
~U. I. Ossedelec, Trans. Moscow Math. Soc. 19, 197

(1968).
YJ. L. Pichard and O. Sarma, J. Phys. C 14, L127

(1981}.
~P. ~. Anderson, D. J. Thouless, E. Abrahams, and

D. S. Fisher, Phys. Rev. B 22, 519 (1980).
~T. P. Eggarter and R. Riedinger, Phys. Rev. B 18,

569 (1978).
'OL. Fleishman and D. C. Licciardello, J. Phys. C 10,

L126 (1977); A. D. Stone and J. D. Joannopoulas, Phys.
Rev. B 24, 3592 (1980).

M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).
'~P. M. Richards and R. L. Renken, Phys. Rev. B 21,

3740 (1980).

340


