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Localization in an Almost Periodically Modulated Array of Potential Barriers
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It is argued that an array of potential barriers modulated in position and strength in a
manner incommensurate with the barrier spacing can be replaced by a 6-function Kronig-
Penny model. With this equivalence it is shown, with use of renormalization-group argu-
ments as well as known results from other calculations, that this model possesses both
localized and extended states separated by mobility edges.

PACS numbers: 71.55.Jv, 71.25.Mg, 71.50.+t

Recently there has been a good deal of interest
in the problem of the nature of electronic states
in an almost periodic potential {APP). This
interest is due in part to the connection with the
problem of two-dimensional electronic systems
in a magnetic field' and to that of electrons in a
random potential. ' It is well known that a, two-
dimensional (2D) solid in a magnetic field can
be mapped to a one-dimensional tight-binding
model for an electron in a sinusoidal potential
with period which can be incommensurate with
that of the lattice. ' Since the wave vector of the
sinusoidal potential is proportional to the number
of magnetic flux quanta through a unit cell of the
2D system, it is usually extremely small, for the
values of the fields easily obtainable in the lab-
oratory. It is known, however, that for a two-
dimensional metallic system, a strong magnetic
field can aid in the formation of a Wigner lattice
or charge-density wave and the unit cell of the
Wigner lattice can be large enough to contain a
sufficiently large magnetic flux to make the ef-
fects observable. 4 Furthermore, regarding the
relationship to the random-potential problem,
APP are potentials that lack translational in-
variance; yet they are not disordered in the
usual sense because there can be distances over
which the potential almost repeats. ' In fact work
by several authors, including one of the present
authors, has indeed shown that an APP represents
a case intermediate between random and period-
ic." It is well known that in a 1D disordered
system almost all states are localized. ' In a
periodic potential there are regions in energy
for which the states are completely extended. In
an APP, however, there can be both extended
and localized states, with the possibility of a
metal-insulator transition at a critical value of
the potential strength. This would seem to indi-
cate that if there is a lower critical dimensional-
ity in the APP problem it should be smaller than
1. Although there can be extended states in an

APP,"the spectrum is not the usual band struc-
ture that occurs in the periodic case. Rather,
as proven by Avron and Simon for Aubry's tight-
binding one-band model, the spectrum is singu-
lar continuous. ' Intuitively we can understand
this from the fact that a gap can occur at one
half of any reciprocal lattice vector, and for an
APP every possible linear combination of the
periods of these potentials with integer coeffi-
cients is a reciprocal lattice vector. Since the
periods are incommensurate, by taking linear
combinations with appropriate integer coeffi-
cients, we can construct a reciprocal lattice vec-
tor arbitrarily close to any value, and hence a
band gap can occur arbitrarily close to any wave
vector. In Ref. 2b it has been argued that while
the spectrum can be Cantor-set like in the region
of extended states, most of the gaps are negligi-
ble, making the band structure appear like that
of an ordinary periodic system.

Hogg and Huberman have recently extended
work by Romerio which claims to prove that all
states in an APP are extended. ' The model con-
sidered in Ref. 7 is that of a continuous Schro-
dinger equation with an APP. Since most of the
studies to date on APP systems, which give
localized states, have been on either one-band
approximation or 5-function potential models,
the possibility always exists that the localization
found is specific to these models. Without argu-
ing about the correctness of the mathematical
proof given in Ref. 7, we show that for a fairly
general almost periodic array of noninfinite po-
tential barriers, localized and extended states
exist.

Let us start by considering APP's which con-
sist of a chain of arbitrary potential barriers of
finite height. We assume that between adjacent
barriers there is some point or line on which
the potential is zero. This class of potentials
represents a case of high physical interest. We
shall restrict our discussion initially to potential
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d'—,+QP„~(x-na) e(x) =re(x), (2)
2tts

where P„,from the above arguments, must be a
periodic function of na with period A. We can
now use the techniques of dynamical systems
theory used by Bellissard et al. ' to construct
the Poincard map associated with Eq. (2), obtain-
ing

4„„+4„,+ P„(sinK/K)4„=2cosK4„, (3)

in which K=ka and 4'„=4'(x'=na). We stress the
fact that nothing has been lost when passing from
Eq. (2) to Eq. (3). For instance in the periodic
case with P„=P„the whole band structure of the
usual KP model is recovered. This mapping has
also been used by one of us to prove localization
in a general random one-dimensional alloy prob-
lem. "

We recognize that the form of Eq. (3) is similar
to that of Aubry's model' if we taken P„=V, cosQna,

barriers symmetric about their maxima but will
argue later on that this restriction is not essen-
tial. Let us first consider equally spaced po-
tential barriers with lattice constant a and with
the strength of the potential at a point x pr opor-
tional to a periodic function f (na) of period A. ,
Here na is the location of the maximum of the
nth potential barrier (which we take to be the
barrier on which x falls) and A. is a period in-
commensurate with the lattice of potential bar-
riers (i.e. , a/A. is an irrational number). Since
our potential barriers are symmetrical, the
transmission and reflection amplitudes for waves
incident on the right and the left are equal. Hence
the transfer matrix for a single barrier has the
form

( I/&* r/f )
!

(~*/f+ i/t j '

where ~ and t are the reflection and transmis-
sion amplitudes, respectively. Following an

argument given by Borland, the symmetric po-
tential barrier can be replaced by a 6-function
placed at the barrier's center with the strength
chosen to give the above transmission matrix. '
According to Borland, the strength of the nth 6-
function potential must be chosen to be equal to
p„=2k

I ~„I /I f „I,where k = [2mB/N']'~'. Here m

and E are the mass and energy of the electron,
respectively. Then our model is equivalent to
the following 5-function Kronig-Penny (KP) mod-
el:

with Qa an irrational multiple of w. The differ-
ence is the occurrence of K-dependent coefficients.
The study of this model can proceed by means of

any of the methods used to study the Aubry model.
In that model the existence of extended states
was established for V, &2 and localized states
when V, &2. In the model given by Eq. (3) this
condition translates to

V, & 2K/sinK.

It is clear from this condition that the occur-
rence of localized states is more likely in the
lowest bands of the energy spectrum. From the
definition of P„wesee that it also depends on

energy. For example, if we take for our poten-
tial barriers the potential

U„(x)= V,f(na)/cosh'o. (x —na),

where f(x) is the previously introduced periodic
function of x and na is the nearest potential max-
imum, it is easily shown that"

p„=2K
cosh/2v[8mV+(na)/k2n + I]' ~]

sinh(@K/n)

For sufficiently low energies, P„is independent
of energy, and we recover the model of Bellissard
et al. ' Such behavior is also found for several
other simple potential barriers. Notice that we
can always make p„aslarge as we wish by in-
creasing V,. Thus, according to Eq. (4), there
will always exist localized states for sufficient
potential strength. Also we can generally expect
that the localized states are separated from the
extended states by mobility edges. The use of
other periodic forms for P„does not seem to
change our conclusions. ""

Another case that can be considered is the one
in which the strengths of the potential barriers
are identical, but the spacing between the barri-
ers is modulated with a period incommensurate
with the lattice spacing. Again using Borland's
arguments' we find that this model is equivalent
to a ~-function KP model with modulated 6-func-
tion spacings. This model has been studied by
Azbel', ' and by deLange and Janssen. " In fact
deLange and Janssen have shown recently by di-
rect calculations of the wave functions and spec-
tra that there exist both localized and extended
states in this model. This implies that the poten-
tial barrier model described above also has this
type of energy spectrum.

Let us now consider a more general case in
which both the positions and strengths of the bar-
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4'„'= -k sink(x„-x„,)4„,
+c

os

k�(x
„-x„,)+„,' —P„+„.

(7a)

(»)
Here the prime on +„means derivative with re-

spect to x, at x =x„',x„is the location of the 6-
function potential, and P„is the strength of the
potential. Eliminating 4 ' we have

(8)

wheret„„„'= sink(x „„-x„)
(10)

We have studied the question of localization in
this model using a renormalization-group (RG)
decimation technique designed explicitly for
models of this type in a previous publication. "
This RG method consists of eliminating the wave-
function amplitude on every other lattice site in

Eq. (8). After each elimination the resulting
equation of motion is of exactly the same type as
in Eq. (8), but with different coefficients. From
the exact analytic recursion formulas given in
Ref. 10, appropriately modified to treat this
problem, we have studied the existence of local-
ized states. The advantage of using this method
is that after r iterations of the RG procedure the
lattice spacing increases exponentially with r
(as 2"). Taking P„=V, cos(Qan) and different val-
ues of Q and K the amplitudes are studied as a
function of r. Specifically, we find indeed that
there are both localized and extended states in
this model for specific values of K, V„and Q.
The identification of localized states is evident
by the tendency of the t's to go to zero as v in-
creases while P„and e„remain finite. This
intuitive criterion was also checked and com-
pared positively with the known results of Ref. 2

riers vary in an almost periodic way. Also we
consider the asymmetry associated with each po-
tential barrier, which by symmetry varies also
in an almost periodic way. This model maps into
a ~-function Kronig-Penny model but now both the
strength p„and the locations of the 5's vary al-
most periodically. If we follow a similar route
to the one that leads from Eq. (2) to Eq. (8), the
Poincare-mapped Schrodinger equation reads

4'„=cosk(x„-x„,)4„,+ — " " ' 4'„,',s ink(x „-x„,)

for the Aubry model and also with those of de-
I ange and Janssen. "

There appears to be a contradiction between
our results and Romerio's proof of a Bloch theo-
rem for a Schrodinger equation with an APP'
(see Dinaburg and Sinai' ). DeLange and Janssen
in fact consider essentially the same transforma-
tion of the system to higher dimensions as is
used in Romerio's proof (see also Ref. 14). They
conclude that if there are localized states, the
wave function must be nonanalytic in this higher-
dimensional space, because it is in fact a, non-
analytic function of the phase of the incommen-
surate periodic potentials relative to each other.
In fact, they present numerical calculations of
the wave function based on this model, as a func-
tion of position and phase for high-order com-
mensurate systems. As the system becomes
higher-order commensurate the localized wave
functions become rapidly varying functions of the
phase. We have performed similar calculations
on the Aubry model which show that, although
when the phase is shifted by 2v/N, where N is
the order of commensurability, the energy spec-
trum does not change, each localized state be-
comes localized around a new lattice site which
is generally quite far from the location of the
original site around which the state was localized.
This implies that when N becomes infinite (the
incommensurate limit), the wave function will
be a nonanalytic function of the phase. The physi-
cal reason for expecting such nonanalyticity can
be understood as follows: Consider a pair of in-
commensurate sinusoidal potentials chosen so
that their minima coincide at one point; call it
the origin. An infinitesimal phase shift will
make the potentials coincide at another point
which is in general far from the original origin.
If we shift the origin to this new point we recover
the original problem, but clearly a state local-
ized at a point in the crystal which is a given dis-
tance away from the old origin will be shifted to
a point which is the same distance from the new
origin. Such nonanalyticity actually signifies a
translational symmetry break. "' Since Homer-
io's proof depends crucially on the assumption
that the wave function is analytic in the phase,
the above observation may be the source of the
discrepancy.
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Localization and Spectral Singularities in Random Chains
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This paper reports consideration of the Hamiltonian for tight binding in one dimension
with off-diagonal disorder of two forms, corresponding to Dyson's types I and II. The
density of states and localization function at the center of the band are found by perturba-
tion theory and a scaling argument. The distinction between the two types of disorder is
clearly drawn, and new singularities in the Green's function pertinent to the problem of
random classical diffusion are predicted.

PACS numbers: 71.55.Jv, 05.40.+j, 63.50.+x

The dynamic properties of random chains have
been of interest since Dyson' calculated the den-
sity of states for a model of phonons in a dis-
ordered chain. More recently there has been ex-
tensive work on the mathematically related prob-
lem of classical diffusion in a random chain. ' Of
particular interest is the fact that disorder leads
to singularities in. the density of states different
from those of homogeneous systems. Dyson
found such singularities for a soluble class of
models with a form of disorder he dubbed "type
I." Quite different singularities have recently

bee n found by Alexander e I; al. ' for a form of dis-
order (type II) superficially similar. Hitherto
the reasons for such different behaviors have
remained relatively obscure. I shall show how

the singular behaviors found follow quite simply
once the localization properties of the exeitations
are considered. In one dimension localization
and spectral densities are closely related:
Thouless' showed that the localization function
A(E) and the integrated density of states are
essentially real and imaginary parts of the same
complex K vector. As well as illuminating the
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