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It is found through theory and magnetohydrodynamic particle simulation that fast mag-
netic-field-line reconnection may consist of more than one stage. After the Sweet-Parker
phase is established for an Alvén time, a faster “second phase” of reconnection takes
over if the plasma is compressible: The reconnected flux varies as ¢ = z/)otpi/pe , Where
p. and p; refer to the plasma densities outside and inside of the current channel.

PACS numbers: 52.30.+r, 52.35.Mw, 52.55.Ez, 52.65.+z

Fast magnetic-field-line reconnection is a pre-
requisite to formation of a compact plasma to-
roid.!”* This process was observed in the simu-
lation of a reversed theta pinch at the island
stage, but also at the island destruction stage
once the tilting instability set in.® A fast recon-
nection process is again responsible for destruc-
tion of the reversed z pinch® as well as for Ka-
domtsev’s model” ® of tokamak disruption. Rapid
reconnection is also believed to play an important
role in the magnetosphere, the sun’s dynamo,
etc. From our studies by magnetohydrodynamic
(MHD) particle simulation and subsequent theoret-
ical development, we have found some general
characteristics of nonlinear evolution of fast re-
connection and we report, in particular, the dis-
covery of multiple phases for this process.

Computer simulation has been carried out on a
2% -dimensional MHD particle code® with the Lax-
Wendroff algorithm to advance the magnetic field.
Initially, homogeneous magnetic fields in the x
direction are embedded in a plasma with opposite
senses in the lower and upper halves. In order
to make the physics simpler, we let the layer be-
tween the two regions with reversed fields (i.e.,
ly| <a) contain a high-density uniform plasma
and no magnetic field, and have sharp boundaries.
(Similar results have been obtained with smooth
boundaries.) The system is periodic in x and is
bounded in the y direction by perfect conductors,
and the perpendicular pressure equilibrium is
satisfied until we pinch the plasma locally by one
(or two) external current rod(s) normal to the
x-y plane (in the z direction). Figure 1(a) shows
an early stage of the magnetic fields pinched by
one rod.

As the external current pinches the plasma, the
magnetic field lines as well as the high-density

plasma slab are pinched downward [ Fig. 1(a)].
The perpendicular pressure balance is increased
in the region close to the current rod and be-
comes nonuniform along the column. Since the
pressure is not balanced in the parallel direction,
the plasma in the layer is drawn away from the
region of the rod along the field lines. As the
plasma flows out, the thickness of the layer de-
creases exponentially in time,'® while the local
density in the layer remains high. In ideal MHD,
the plasma layer develops into a singular current
sheet, in a quasistationary state, always out of
equilibrium.*

For resistive (or nonideal MHD) plasmas, how-
ever, the layer width becomes stabilized as field
lines begin reconnecting at such a rate that the
perpendicular inflow of particles into the current
sheet due to the field-line annihilation matches
the plasma end loss along the magnetic field lines
[see Fig. 1(c)] due to the parallel pressure drop.
The inflow is governed by magnetic diffusion due
to resistivity in the layer. This is a slow process
(although certainly faster than the Rutherford
process in the equilibrium) described earlier by
Sweet and Parker.'? We quantify this process by
the succeeding analysis.

The in-the-plane magnetic flux ¥ and out-of-
the-plane (along the z axis) magnetic field B, are
described by

0Y/8t + V- VY =V, 1)

9B,/dt +V - VB, =10V ?B,, (2)

where B=B, +B,¢, and B, =V¢ X8, ; v, is ne-
glected. For the initial configuration we assume
the flux function to be linearly increasing iny,
¥=B,lyl, on each side of the exteriors of the cur-
rent sheet located at y =0; this is equivalent to
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FIG. 1. Flux lines ¥. One-pinch case in (a) the
Sweet-Parker phase (¢ = 30) and (b) the second phase
(t =75), where L * is indicated (L *=x* —xg. (c) Sweet
and Parker model for reconnection. (d) Two-pinch
case in the second phase (¢t =75), where L* andL, (L,
=x,—x,) are shown. ¢ is in units of A/¢c,;, where A is
the grid spacing iny and ¢, is the sound speed.

the assumption of a uniform magnetic field of
magnitude B, , but as shown in Fig. 1(c). In these
exterior regions the diffusion terms are negligi-
ble and the flux velocity is determined by the
fluid in the y direction:

v =y/B,. 3)

Inside of the current sheet with half-width a, the
perpendicular velocity v is zero and the diffusion
process becomes important:

p=nv¥=nB, /a. @)
The balance of the perpendicular inflow with the
longitudinal outflow gives

pvL=pua, (5)

where subscripts ¢ and ¢ refer to the external and
internal quantities with respect to the current
sheet. Equations (3) and (5) give

d=Boupa/o,L, (6)
while Eqgs. (4) and (5) yield
a=n"%p,L/p;u)"?. (7

The peak density p; with respect to p, is deter-
mined by the perpendicular pressure balance p;
+B,;,2/81 =p,+B,2/81 +B,,%/81 and we use an
adiabatic law for p, i.e., p/pY=const. The plas-
ma slab develops a diffuse profile as it becomes
thinner as shown by Eq. (4). Thus p; in Eq. (5)
and thereafter is the average density over the
slab cross section (which is about 60% to 80% of
the original peak value). The flow velocity « is
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FIG. 2. (a) Model for the “second phase.” (b)—(d)
log-log plots of ) vs t. (b) One-pinch case with resis-
tivity n= 0.01. Line 1 has a slope 0.86 and line 2 has
4.0. (c) One-pinch case with = 0.1. Line 1 has slope
1.0 and line 2 has 2.9. (d) Two-pinch case n= 0.1 with
slope 1.8 in units of ¢;A. We have defined x* = x,+L *
and x, = xy+L ;.

determined by the drop in perpendicular pressure
B /81 along x," and is ¢ o.(0,/0;)"'? (when B, can
be neglected at the cusp). This gives

v =Rm_ 1/2("Ae(0i/pe)1/2’ (8)

where the magnetic Reynolds number R,,=C . L/7
and the Alfvén velocity ¢ s.= (B .,2/47p,)"'2. Sweet
and Parker'? gave an incompressible version

(o; =p,) of Eq. (8).

If the plasma is compressible, however, the
poloidal flux reconnected in the Sweet-Parker
phase may pile up in the current sheet as time
goes on. The current sheet then becomes tapered,
shortening the effective exhaust distance L. It is
at this stage when a drastic enhancement in the
reconnection rate is observed in our simulation
[see Fig. 1(b)]. A simplified model of this stage
may be depicted as in Fig. 2(a). The trapped re-
connected flux has a tapered structure with pitch
angle o, where o is small enough compared with
unity that the initial pressure balance and, there-
fore, p; /p,, are not modified significantly. As a
new flux tube reconnects at x =0, its plasma
pressure goes up to P; (we define P =p + B 2/8)
over width a. However, at distance L*=a/a
along the x axis, this flux tube is located at a<y
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<2a outside the diffusive area, with a magnetic
field B, and a plasma pressure P,. Since no mag-
netic pressure gradient exists along the field line
(with angle o from the x axis), at x =L* the paral-
lel pressure satisfies p;u?/2=P; — P,. Therefore,
the plasma in that flux tube will flow with a veloci-
ty u =c ol0; /p.)*'? (Ref. 10) along the @ direction.
The angle @ is determined by a =B, /B, [see ‘Fig.
2(a)], where B, is the average magnetic field
alongy in the diffusion layer, given by B,=y/L,,
where ¢ is the total reconnected flux and L, the
length along the x direction traveled by flux ¥.
With L, =L* +ut, we obtain

L*=uty, /@ ~v,), 9)

where §.=aB,. Inthe evaluation of L, we assume
that the flux in the current sheet is carried in-
stantly over a distance L* where diffusion is pre-
dominant, and then remains trapped with the
fluid which moves with a velocity # along x. Once
L* becomes shorter than L, which happens when
¥>y, ort>t,~ L/u, substitution of Eq. (9) into
Eq' (6) yields ¢y - (pi /Pe)lf) ==, or

Z/) =¢o(t/t o)pi/pe + (pe /pi)lpc-

If the plasma is compressible, the reconnection
rate becomes much faster than that in the Sweet-
Parker phase after £, with a shrinking current
sheet L*, There will be a sharp increase in the
reconnection velocity given by v =z'p/Be g , with
6=p;/p,—1. We shall call this stage of faster
reconnection the second phase. If the plasma is
incompressible (0; =p,), the Sweet-Parker phase
lasts beyond {,. Correspondence to relations in
Egs. (9) and (10) can be found in our simulation
in Figs. 1(a) and 1(b) for shrinking L* and in
Figs. 2(b) and 2(c) for two (or more) phases of
$(t). The exponent obtained from Fig. 2(b) for the
second phase is 4.0 with p;/p,~ 4.0 in the simula-
tion, and the exponent from Fig. 2(c) is 2.9 with
p:/P.~3.4; both cases are in good agreement
with Eq. (10).

The magnetic force that pulls the plasma out of
the current sheet in the ¥ direction contains two
terms: one is similar to @?B,%/8ma due to the
curvature of B, and the other is the x component
of the perpendicular magnetic pressure F,=aB2/
871d considered by Petschek,'® where d(x) is the
local column width. The latter is much larger
than the former and is of the same order of mag-
nitude as the parallel plasma pressure drop ',
considered here. Because @ =a/L* and B,?/8r
=P, - P,, the term ¥, is about (a/@)F,, and it is
large for | x| <L* where @~a. It is noted, how-

(10)

ever, in our simulation that the plasma in the re-
connected region flows along the field lines as as-
sumed by us, and takes a tapered shape with
angle @. The Petschek term F,, is, therefore,
largely canceled by the pressure term «(P; - P,)/
a.

The geometry of the system is important both
for the second phase and for the eventual satura-
tion of reconnection. When the current layer is
pinched from both sides so that it remains straight
during the reconnection process, a different ex-
ponent for the time dependence for the reconnect-
ed flux is observed in the second phase. Figure
1(d) shows the flux lines in this case. The rate
of reconnection in this case is given in Fig. 2(d):
¥=(t —t,)* where £§~2.

In this latter case we propose the following
mechanism which impedes the process in Eq. (10).
In slab geometry field lines due to the combina-
tion of a dipole (B, on axis) and uniform B, are
approximately described by

y &) =y (1 +6x%/r,?),

where |y | < 7, (close to the plane of symmetry).
Here 0 =B, /(B, + B,) and 27, is the dipole distance.
In this geometry the flux is packed in such a way
that the reconnected flux ¢ < B,y (x) with x =L,

~ut, where the field line y (0) =a is considered.
Using these conditions in Eq. (11), we obtain

v=aB,0Wt)?/r 2. (12)

If > B,y (x), the field line would be pushed away,
increasing the current sheet thickness and there-
fore stopping the diffusion and reconnection pro-
cess. The reason this process in Eq. (12) is
slower than Eq. (10) is that when we pinch from
both sides, the reconnected field lines close to
the current sheet (which is the plane of symmetry
for this case) stay straighter and openup less
angle. Equation (12) agrees well with simulation
results [Fig. 2(d)].

Finally, previous simulation investigations are
consistent with our theory and simulation. Sato
and Hayashi’s simulation'* (their Fig. 1) shows
that fast reconnection sets in when L* becomes
the length of their system, consistent with the
present theory of the second phase. Park’s
work® notes that the incompressible case stays in
the Sweet-Parker phase all the way. In the island
coalescence process, this second phase of fast
coalescence should also exist in the small-n case
described by Biskamp and Welter® if the plasma
is compressible. Our particular model is one of
many® %1415 which give rise to a current singu-

(11)
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larity. (It corresponds to the setup in Ref. 5 to
initiate island formation in a reversed pinch.)
However, the model and its subsequent physics
are general enough to pertain to many other cases,
since nonlinear developments are common over
many situations, e.g., the external driven pinch
reconnection, the development of the internal
coalescence instability, etc.
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Plasma heating by near-perpendicular injection of up to 7.2 MW of neutral-beam power
has been studied in the PDX tokamak. Collisionless plasmas with central ion tempera-
tures up to 6 keV have been obtained. The total plasma energy, which is dominated by
contributions from beam and thermal ions, rises linearly with increasing beam power.
The ion heating efficiency in PDX is comparable to that measured in the Princeton Large

Torus with tangential injection.

PACS numbers: 52.55.Gb, 52.50.Gj, 52.55.Pi

Neutral beams have been used for auxiliary
heating in many tokamak experiments. In most,
the beams have been injected essentially tangen-
tially to the toroidal magnetic field. For future
large machines, perpendicular injection is attrac-
tive for achieving good beam penetration at beam
energies that are practical for positive ion
sources. Up to ~1 MW was injected near-per-

pendicularly into the TFR tokamak.! On the
Poloidal Divertor Experiment (PDX), these re-
sults have been extended to power levels of 7.2
MW to examine the effectiveness of perpendicular
injection in heating plasmas to the high-tempera-
ture, low-collisionality regime which will be
typical of the next generation of devices.

The PDX tokamak is described by Meade et al.?
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