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Lack of Ergodicity in the Infinite-Range Ising Spin-Glass
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The size dependence of slow relaxation processes in the infinite-range Ising spin-glass
is investigated by computer simulation. Below the transition temperature, relaxation of
variables which do not change sign under inversion of the spins is complete by a time 7,
where In7 NY/¢ and so diverges as N, the number of spins, tends to infinity. The “ergo-
dic time” Teg satisfies lnTeg@N1 %, These results are consistent with a physical picture
where barriers between free-energy minima in phase space have a height proportional to

the square root of the number of spins to be flipped.

PACS numbers: 05.50.+q, 64.60.My, 75.10.Hk

Spin-glass systems are characterized by very
slow relaxation' below the freezing temperature.
Controversy™? has centered on whether this is
due to a sharp phase transition or a more gradual
increase in relaxation times. A simplified model
which does have a transition because the range
of interactions is infinite has been proposed by
Sherrington and Kirkpatrick® (SK). Using differ-
ent lines of argument various authors*™® have
suggested that relaxation times in the SK model
diverge when the number of spins, N, tends to
infinity and T<T_, the transition temperature.
This could arise from free-energy barriers,
separating minima in phase space, whose height
diverges in the thermodynamic limit. It is tempt-
ing” to associate these minima with solutions of
the mean-field equations of Thouless, Anderson,
and Palmer® (TAP), which are known to have an
enormous number of solutions.® An infinite sys-
tem would stay close to one minimum at all
times because it can never get over the infinite
barrier surrounding it. By contrast statistical
mechanics (ensemble average) sums over all
minima with an appropriate weight. An infinite
system would therefore be nonergodic because

time and ensemble averages would give different
results.” _

This picture, while intuitively reasonable, rests
on the assumption that relaxation times diverge
for N—~«~, Here we present results of Monte
Carlo simulations which show directly this in-
crease of relaxation times with system size,
Furthermore we are able to quantify the relaxa-
tion processes in some detail. Our main con-
clusions are as follows.

(i) For excitations which do not involve turning
over the whole system from the vicinity of one
ground state to the “time-reversed” ground state,
the spectrum of relaxation times extends to a
rather well defined maximum value 7 such that
(at 7=0.4T,)

InT =2.58NY% - 0,66 (1)

(see Fig. 1). Lack of ergodicity then follows be-
cause InT—~© as N — o,

(ii) The slow relaxation of a correlation func-
tion ¢‘®(¢), defined in Eq. (6) below, has been
studied in detail for different sizes, mainly at
T=0.4T,. When plotted versus In¢/In7 all our
results for ¢‘®(t) — ¢®(«) lie on a single “uni-
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FIG. 1. A plot of InT against NY/4 for several values
of N between 16 and 192 at 1'=0.4. Apart from N =192,
for which only one run was performed, the error bars,
which represent one standard deviation, are obtained
from the variance of four separate runs. The straight

line is a least-squares fit and is given by Eq. (1). Inset:

the scale factors for the vertical axis in Fig. 2. The
dashed line is a guide to the eye.

versal curve” shown in Fig. 2, provided a small
rescaling of the vertical axis (inset in Fig. 1) is
made for the smaller sizes.

(iii) It was previously argued® that excitations
from one minimum to another involve turning
over a large number of spins, AN, where AN
«NY2, If we assume that In7 is proportional to
a free-energy barrier height, Af, then we have
from.Eq. (1)

Af o ANVZ, (2)

In other words the barrier between two minima
is proportional to the square root of the number
of spins which have to be turned over to go be-
tween the minima,

(iv) There are also excitations which turn over
all the spins. These control the long-time be-
havior of the standard correlation function g(¢)
defined in Eq. (5) below. The time for these
processes to occur, which we call the ergodic
time 7.,, diverges even for a ferromagnet and
gives rise to spontaneous symmetry breaking. In
mean-field theory ln7.;, <N for a ferromagnet™
but for the SK model our calculations rule out the
first power of N and are consistent with

InT e, N2, (3)

as shown in Fig. 3. This result is equivalent to
Eq. (2) since here AN ~N. Notice that InT .z >>1n7
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FIG. 2. A plot of Ag@(8) =¢2(t) — g2 (*) against
In¢/InT where InT is shown in Fig. 1 and the vertical
axis has been multiplied by an amount shown in the in-
set in Fig. 1. The temperature is I'=0.4. All the data
appear to lie on a single universal curve with a change
in slope at Int =InT.

for large N.
We now discuss our calculations and results in
more detail,
The SK model is described by the Hamiltonian
H=- EJUS:'S}, (4)
i<

where S;=+1 is an Ising spin, ¢=1,...,N, and

w
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FIG. 3. InTeq plotted against N2 for values of N be-
tween 16 and 128 at T=0.6. The results are consistent
with InT, OCNI/Z. The errors bars correspond to one
standard deviation and are obtained from several dif-
ferent runs.
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the J;; are independent random variables with a
Gaussian probability distribution of width® 5(N
—-1)"!, the same for all pairs of spins. In the
thermodynamic limit there is a transition at T
=1, in these units. We shall not include a mag-
netic field. The spins are flipped by the “heat
bath” Monte Carlo procedure,’! and time is given
in units of Monte Carlo steps per spin.

Starting from an initial spin arrangement the
simulation proceeds for a time {, in order to
equilibrate the system., One needs ¢, > 7 for the
energy to relax and we check a posteriori that
this condition is satisfied. The simulation then
continues and we calculate the correlation func-
tions

q(t) =N"35,(S; (¢,)S; (t+1)), (5)
and

@)y 2

q (t)"N(N—l) i‘;j(s,.(to)sj(to)

X S (t+t)S{t+t))s. ()

Here (-+-), denotes an average over samples.
For the calculations of ¢‘®(¢) presented here the
number of samples, N, satisfies NN, =100 000,
which is necessary in order to get good statistics.
The Hamiltonian in Eq. (1) is invariant under
the “time-reversal” operation S; -~ S, for all <.
q(¢) changes sign if all the spins flip over between
t, and £,+{. It will only reach its equilibrium
value, which is zero because no symmetry-break-
ing field is applied,'? for times longer than the
ergodic time 7., On the other hand ¢(*)(¢) fol-
lows the fluctuations of a pair of spins S;S; (¢
#7j), which does not change sign under inversion
of all the spins. Hence it is insensitive to fluctua-
tions which turn over the whole system and will
reach its (nonzero) equilibrium value ¢‘® for
times greater than some value, 7, which will
be much less than Tege Hence

q®(t) =@ =<(5;8,)2, (7

for Int>1n7, where ---); denotes a statistical
mechanics average. In fact q® is related to the
energy per spin, U(T), by > ¢®=1-2T|U(T)
This is useful because U(T) is obtained at time &,
the end of the equilibration process, and so we
know to what value ¢(®)(¢) is relaxing as ¢ — .

In order to study the size dependence of ¢(*)(t)
carefully we have mainly considered the single
temperature 7=0.4. Plotting Ag®)(t)=q¢®(¢)

- ¢® against Int we obtain zero for Int greater
than a certain value In7, which is rather well de-
fined since a change in slope is observed at this

.

point. Furthermore In7 is found to increase with
system size, as shown in Fig. 1, and is accurate-
ly given by Eq. (1) for 16 <N <192, If one as-
sumes the form In7=aN*+b and allows the expo-
nent x to vary we find x =0.27+ 0.10. We strongly
suspect that the exact value is x =3 .

If Ag®)(¢) is plotted against In¢ /InT all the data
for different sizes at 7'=0.4 appear to lie on a
single universal curve, as shown in Fig. 2. A
small rescaling of the vertical axis is also neces-
sary but this scale factor tends to unity for large
N as shown in the inset in Fig. 1. The universal
curve is almost a straight line, with negative
slope, up to In¢/lnT=1. At this point there is
apparently an abrupt change of slope and Ag‘®(¢)
=0 for Int/InT>1. In terms of barriers these re-
sults can be interpreted as an almost constant
density of barrier heights up to some critical
value Af, where BAf, =In7, beyond which there
are no more barriers. A Inf dependence is also
seen in many remanance magnetization experi-
ments'® and in simulations of ¢(¢) on short-range
models.’® Earlier simulations’® on the SK model
report a ¢~/ variation of ¢(¢) but this is for
shorter times and larger samples, and so repre-
sents fluctuations in the vicinity of one minimum,
Our results provide evidence for Sompolinsky’s*
idea that there is a spectrum of relaxation times
which all diverge in the thermodynamic limit.

We have also studied the times at which the
system turns over from the vicinity of a ground
state to the “time-reversed” one. If the time
between the successive flips of the whole system
is A, then we define InT., = {1nAt)g),;, where
(eee )s denotes an average over all flips for a
given sample. Results for In7.; at 7=0.6 are
shown in Fig. 3 and are consistent with an NV2
behavior. Since these large flips involve of order
N spins the data in Fig. 3 agree with the free-
energy barrier formula, Eq. (2). One of us
(A.P.Y.) and, independently, Morgenstein'” have
also obtained Eq. (2) for a nearest-neighbor spin-
glass model in two dimensions but with AN, and
hence Af, finite in the thermodynamic limit,
implying the absence of a transition in that model.

Since In7 <1In7., for large N the earlier stages
of relaxation of ¢(¢) are not affected by reversals
of the whole system and for Inf <In7., we find
[g(£)}2=¢®(¢) apart from expected differences of
order N2, Consequently a single “order pa-
rameter” ¢(¢) is adequate up to times where
reversal of the whole system starts to occur.

To conclude, we feel that the SK model is quali-
tatively understood and that the central feature
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is the many minima in phase space, correspond-
ing to TAP solutions, which become infinitely
long lived in the thermodynamic limit. They are
therefore strictly speaking stable rather than
metastable states. If a uniform field, H, is in-
cluded the SK solution is correct above the
Almeida-Thouless™ instability line in the H-T
plane and there is only one TAP solution® in this
region, We therefore expect that InT <NY* every-
where below this line, but with a coefficient
which vanishes as the line is approached, and
we anticipate that above the instability line InT
will saturate at a finite value as N — =, This
conjecture will be verified in future calculations.
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Reduction of the Fokker-Planck Equation with an Absorbing or Reflecting Boundary
to the Diffusion Equation and the Radiation Boundary Condition
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It is shown, from microscopic considerations based on the Fokker-Planck equation,
that the boundary condition (used in conjunction with the diffusion equation) in which the
particle density is set to zero on a perfectly absorbing surface is untenable, and, for
the first time, the boundary condition for any plane (partially or perfectly) absorbing
surface is derived.

PACS numbers: 05.20.Dd, 05.40.+j, 28.20.-v, 82.40.-g

By treating Brownian motion as a simply Mark- called field-free Fokker-Planck equation
off process in phase space, Klein," Kramers,?
and Chandrasekhar® demonstrated (independently) <
that f(x,v,t), the distribution function of a free
Brownian particle of mass m, satisfies the so-

b 8\, 08 ([ g0
ot +”ax>f"53u <U+B au>f’ @

in which B is the friction coefficient, ¢/8 =T /m ,
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