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Scaling Function for the Structure Factor in First-Order Phase Transitions
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A simple, phenomenological theory is presented for the scaling function of a phase-
separating binary system. The model describes a gas of spherical droplets of the minor-
ity phase, surrounded by depletion zones, and involves a simple approximation for the
two-point distribution function. Reasonable agreement is found with the structure factors
for the kinetic Ising model, binary alloys, and binary liquids.
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In systems undergoing phase separation follow-
ing a quench into the two-phase region, the time-
dependent structure factor has been found to sat-
isfy a, sealing law S(q, t) =Cq, "(t)0'(q/q, (t)},
where q, (t) is a time-dependent characteristic
wave number, d is the dimensionality, and |"- is a
proportionality constant. In many systems the
scaling function & g) is reasonably time indepen-
dent. This scaling appears rather universal in
that it applies to such different systems as the
Ising spin-exchange model, ' binary liquids, '
binary alloys, ' glasses, ' and tricritical systems. "

This scaling was implicit in a droplet theory
proposed by Binder and Stauffer, ' and subsequent-
ly by Binder, Billotet, and Mirold. ' However,
there exists no first-principles theory which pre-
dicts the form of the scaling function for systems
with conserved order parameter. In view of the
evident difficulties involved in obtaining such a
theory, it seems useful at this stage to have a
phenomenological theory for the scaling function.
Hennion, Ronzaud, and Guyot' have proposed one
form for the structure function, based on an
equilibrium hard-sphere correlation function. As
we point out below, this is inaccurate for small
wave numbers. The most detailed phenomenologi-
cal theory is due to Furukawa. " His theory
(which contains three adjustable parameters)
gives a, numerical solution for S(q, t) which is in
good agreement with the Monte Carlo simulations
of Lebowitz, Marro, and Kalos (LMK)' at two
different quench positions, one critical and one
off critical. The agreement with the data for
binary liquids of Knobler and Wong (KW)' at an
off-critical quench is also quite good.

In this Letter we present an approximate theory
which yields an explicit, analytic form for the
sealing function. We consider a simple, phenome-
nological model with no adjustable parameters,
which we believe describes the essential physics

of most phase-separating systems, close to the
coexistence curve. We envisage a gas of droplets
of the minority phase, occupying a fraction v of
the total volume. The volume fraction v is the
only way in which the quench position (tempera-
ture and average concentration) enters into our
model. Each droplet is surrounded by a region in
which the minority concentration is below its
average value. In the literature such regions are
often referred to as "depletion zones. " Somewhat
similar physical pictures have also been suggest-
ed by other authors. """ The model ignores
complicated physical effects, such as strain and
anisotropy in alloys. It also neglects interesting
hydrodynamic effects in liquids, except to the ex-
tent that they modify the scaling length. In spite
of its simplicity this model provides a satisfacto-
ry description of the major features of experi-
ments over a wide range of times where the dy-
namics is highly nonlinear.

We assume scaling with one single length scale,
R(t), which we take as the average droplet radius.
Although we make no explicit assumptions about
the time dependence of R (t), the region of validity
of the model approximately coincides with the
Lif shitz-Slyozov-Wagner regime, " in which R
—t"'. We further assume that the droplet sur-
faces are sharply defined and smoothly curved.
This restricts us to low v, and determines the
asymptotic behavior S(q, t) -q "" for large q."
In the theory of small-angle scattering this is
known as Porod's law." At higher v, where
percolation effects become important, we expect
our model to give much less accurate results.

The structure factor S(q, t) (after subtraction
of a weakly q-dependent background) ean be ex-
pressed in terms of the conditional probability
V 'P(i rl I R,R') of finding two droplets a, distance
i ri apart. In the monodisperse approximation
R =R'—=R(t) the normalized scaling function 8(Q)

286



VOLUME 49, NUMBER 4 PHYSICAL REVIEW LETTERS 26 JUz.v 1982

=C 'R 'S(Q/R, t) is found to be (for d =3)

S(Q) = 3, , t'(Q) 1-,'„,j[1-P(I I)]

where Q =qR and y(Q) =3(sinQ —QcosQ)/Q' is
proportional to the form factor of a sphere. The
first term in the brackets arises from single-
droplet scattering, while the second term is due

to pair correlations. The normalization is chosen
so that 1, Q'S(Q)dQ =1. In the late-stage coarsen-
ing regime v has essentially reached its equilibri-
um value, as given by the lever rule. S(Q) is
then time independent, as can be seen from (1).

In the absence of a detailed theory for the non-
equilibrium two-point distribution function
V 'P(I r!IR,R'), we here use a simple approxima-
tion, which we believe expresses the essential
features of the spatial droplet distribution. We
ean easily find the limits of P for large and small
I r!: Since the centers of two different droplets
cannot coinicide P(0!R,R') =0, while statistical
independence at large distances yields P(~I R,R')
=1.

We now invoke local conservation of density,
which has often been overlooked in previous
treatments of this problem. This requires the
structure factor to vanish at q =O. For brevity
we present this argument here only for the mono-

disperse case. The Fourier transform in (1) can

be written as an excluded volume times a function

g{Q) which approaches unity as Q- 0. We can
write the term in brackets in (1) as 1 —v (R, /
R)'p(Q), where R, is the radius of the excluded

volume. Local conservation requires S(0) =0,
which yields R, =u "'R. Thus the excluded
volume is simply the average volume per droplet.
This excluded volume corresponds to the "deple-
tion zone" mentioned above. It should be noted

that this implies a long-range nonequilibrium cor-
relation function. Whether this feature will be

present in a more microscopic theory remains to
be seen.

R(t) cannot be directly measured in scattering
experiments. For comparison with experimental
data we therefore introduce the normalized seal-
ing function &(x) =Q,„'S(Q,„x), where Q „is
the peak position of S (Q), and x = Q/Qm ax =qjq m ax ~

We have tried several approximate forms for
P(I r!), but we find that although S(Q) depends on

the choice, &(x) is relatively insensitive to it.
We therefore have adopted the simplest possible
form, namely P(I rI) =0 for I rI ~R, a.nd P(I rI) =I
for I r!&R,. This yields

S(Q) =[2/»(I -v)]&'(Q)[1 —y(v "'Q)]. {2)

! We have also extended this argument to the poly-
disperse case and obtained an averaged structure
factor, assuming the Lifshitz-Slyozov-Wagner
distribution for R. It should be noted that P(l rl)
differs from the Ashcroft-Lekner equilibrium
hard-sphere correlation function employed by
Hennion, Bonzaud, and Guyot. ' The latter yields
a, finite va.lue for & (0).

As a result of the problem of obtaining reliable
data at very small and very large wave numbers,
experimental results are expressed in terms of
a scaling function +{x), normalized on some fi-
nite interval [A,B]. The variable x =q/q =Q/0,
where q and Q are scaling wave numbers which
may depend on [A,&]. Theoretical predictions
are, however, more conveniently expressed in
terms of &(x), which is normalized on [0,~]. To
be able to compare results from different experi-
ments with each other, as well as with theory,
we relate the experimental and theoretical scaling
functions by

& (x)

= (Q.../0)'[J-, Q'S(Q)d Q) F(.Q.../Q) (3)

This equation is exact if S(Q) is chosen such that

&(x) is the correct sca.ling function. For KW, Q

=Q,» while for LMK, Q is the truncated first
moment of S(Q). We have used Eq. (3) to compare
the scaling functions obtained by KW and LMK to
our theoretical & {x). The experimental half-widths

b. , peak heights E,„, and moment ratios x,/x, '
are also related to their theoretic. al counterparts
by relations easily derived from (3). For LMK

(Q,„/Q) &1, which leads to a, rescaling of both

the horizontal and the vertical scales. Although

this resealing is necessary for comparison with
KW and with theory, it makes it difficult to assess
whether disagreements are due to real, physical
differences, or simply reflect the approximate na-
ture of S(Q), which defines the rescalings.

Our main results are displayed in the figures.
In Fig. 1 is shown & (x') at v =0.0855 for the poly-
disperse case, together with rescaled data from
LMK's quench I', and KW's quench R, which are
made at approximately the same U. The agree-
ment between theory and experiment seems rea-
sonably good. The agreement with the Monte

Carlo results becomes better for the quenches

P, and P„which are at lower v. As shown by
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FIG. 1. Scaling function 7(x) for v = 0.0855 (full
line), together with experimental data from LMK's
quench P3 at v = 0.088 (dots) and from KW's quench
K at v = 0.083 (broken lines). The LMK data are from
Fig. 8 of Ref. 1. The KW data are from Fig. 2 of Ref.
2. The two curves represent limits for the experimen-
tal scaling function and show to which extent scaling
is obeyed. Both data sets are rescaled according to
Eq. (3).

LMK, the Monte Carlo data also agree reasonably
well with the results of Hennion, Honzaud, and
Guyot for the Zn-Al binary alloy. In Fig. 2 is
shown the peak height & „vs v. , „ in-
creases with increasing v, while the moment
ratio x,/x, ' and the half-width 6 both decrease.
This corresponds to both the experimental and
theoretical scaling functions becoming higher
and narrower as v increases. The agreement
between the experimental and theoretical results
is quite satisfactory for both the peak height and
the moment ratio, especially for the liquid data.
The theoretical predictions for the half-width are
somewhat less satisfactory, although not unrea-
sonable. We have not been able to explain the
poorer agreement with the Monte Carlo data, un-
less it is due to the above-mentioned uncertainty
in the rescaling. We have also made similar
plots using the monodisperse approximation (2)
for 8(Q). We find that the polydisperse scaling
function yields a somewhat better agreement
both between the two sets of rescaled experimen-
tal data, and between theory and experiment. A

more sensitive test of our basic assumptions
about the behavior of P(~ r~) would require scat-
tering data at smaller v than currently available.

Since v is the only quench parameter which
enters into our theoretical +(x), we have dis-
played the data, as functions of v only. If there is
an additional dependence on quench temperature
this may be misleading, as the data belong to con-
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FIG. 2. Peak height $~» vs volume fraction v. Data
for LMK's quenches P &-P4 (numbers) are from Figs.
7-9 of Ref. 1. Data for KW's quenches G-Q (letters)
are from Table I of Ref. 2. Both data sets are rescaled
according to Eq. (3), using the polydisperse $(Q).
It should be noted that the "error" bars include the ef-
fect of the weak time dependence of the experimental
scaling functions.

0.20

siderably different temperatures. The liquid
quenehes generally are much closer to T, than
are the Monte Carlo simulations. For the eritieal
v =0.5, where we would expect our model to be
inadequate, the experimental sealing functions
certainly are temperature dependent, even after
resc aling.

In conclusion we remark that in comparing our
theory with that of Furukawa one should note that
he has focused on the dynamics of the phase sepa-
ration through obtaining an approximation for the
cluster gas free energy functional. We have fo-
cused on taking into account the effect of the de-
pletion zones through a simple approximation for
the correlation function. The two approaches are
complementary in that Furukawa obtains dynami-
cal information, but no explicit analytical form
for the scaling function" while we obtain an ex-
plicit scaling function with no adjustable parame-
ters, but no dynamical information. We also be-
lieve that the normalization procedure is essen-
tial for reliable comparison between experimental
data from different systems, and between experi-
ments and theory. Finally it should be noted that
a scattering intensity in the form of a "collapsing
halo" is often considered to be a hallmark of
spinodal decomposition. However, our results
for the structure factor show that such a halo is
equally consistent with growth of localized drop-
lets. '
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