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Generation of Superfluid Turbulence Deduced from Simple Dynamical Rules
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It is postulated that a quantized-vortex tangle obeys classical vortex dynamics, and that
internal line-line crossings can result in topology-changing reconnections. Implementa-
tion of these rules leads to a quantitatively successful description of homogeneous super-

fluid turbulence.

PACS numbers: 67.40.Vs, 67.40.Hf, 47.30.+s

If superfluid *He is made to flow rapidly through
a channel, it undergoes a transition to a turbulent
state in which the fluid is permeated by a dense
random tangle of quantized vortex filaments. Al-
though much experimental effort has been de-
voted to this interesting problem," theoretical
work has been limited.?’®> The most recent at-
tempt® to develop a satisfactory description is
based on the idea that the action of the normal
fluid, which tends to make certain vortex loops
grow without limit, competes with the effect of
line-line crossings, which tend to keep the tangle
random. The resulting order-of-magnitude theo-
ry is unsatisfactory in several respects, but
since even this treatment is already very compli-
cated, prospects for further progress have
seemed dim. It therefore comes as a surprise
that, as shown here, a slightly refined version of
the ideas presented earlier can be implemented
to yield a conceptually satisfactory and quantita-
tively accurate description of homogeneous super-
fluid turbulence.

The configuration of the random curves which
make up a vortex tangle can be given in the par-
ametric form §=5(£,/), where ¢ is the arc length
and ¢ is the time. The instantaneous motion of
the vortex singularity with respect to the local
average superfluid velocity is then given by®

85/0t=B5' X8" + a8’ X (V= Vs =B8' x8"). (1)

Here 8’ is the vector tangent and S” the vector
curvature of the vortex filament at the point in
question; v, and v, are the local average normal
and superfluid velocity fields; « is a friction con-
stant related to the conventional Hall-Vinen® co-
efficient B by a =p,B/2p; and B =(k/47)In(c,/s"a,),
where « is the quantum of circulation, a,~10"8
cm is the vortex cutoff parameter, and ¢, is a
constant of order 1. Equation (1) is based on the
“localized self-induction™ approximation,® which
neglects the long-range effects of the vortex
velocity fields. Although this usually introduces
only minor errors of order 10%, a special situa-

tion arises when lines within the tangle attempt
to cross [Fig. 1(a)]. The interaction between the
two lines will generate severe local distortions,
but these are of minor importance since they are
quickly damped out. The important point is that
such a crossing raises the possibility that the
two lines will suffer a reconnection [Fig. 1(b)].
Such an event changes the topology of the vortex
tangle and thus affects its entire future develop-
ment. Inow make the explicit assumption that
such reconnections will occur with a‘probability
of order unity whenever two lines try to cross.
This simple idea, together with Eq. (1), forms
the sole basis of our discussion.

I will first discuss an elementary but important
conceptual point. Equation (1) predicts that loops
in the vortex tangle, driven by v, =v,— Vs, will
either grow or decay, depending on their size. It
has never been clear how a self-sustaining turbu-
lent state can in fact be possible under these con-
ditions. To see the difficulty, consider the highly
schematic representation of Fig. 1(c), where the
tangle is pictured as consisting of vortex rings.
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FIG. 1. Effect of topology-changing reconnections.
The driving velocity ¥,; points out of the plane of the
figure.
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It is not hard to make the rings grow by making
V.5 large enough, but in that case they will even-
tually annihilate at the boundaries leaving the
system empty. Calculations involving more real-
istic descriptions of the vortex tangle lead to the
same result. This difficulty is eliminated if the
loops are allowed to reconnect as they grow. As
can be seen from Fig. 1(d), numerous new small
loops can then be formed continually, some of
which in turn will grow, maintaining the local
steady state. The whole process is accompanied
by the continuous creation of outwardly propagat-
ing giant loops, which eventually annihilate at the
boundary and complete the phase slip process.®

An analytical treatment of such complicated
mechanisms in the real vortex tangle appears to
be out of the question. One may note, however,
that this problem falls into the currently fashion-
able category of systems in which a simple but
nonlinear set of dynamical rules generates ran-
dom behavior. Thus it seems natural to adopt an
approach which has proved most powerful in this
area, namely that of implementing the dynamical
ground rules in a numerical simulation.

Before discussing the calculations, we note that
Eq. (1) can be put into dimensionless form

ago/ato z'gol X gO” +a—§01 X (‘70 _ _éol XEO”) (1/ )

by measuring lengths in terms of some charac-
teristic distance D, time in units of D2/8, veloci-
ty in units 8/D, and force in units p;kBa. The
solution of any problem involving Eq. (1) can be

FIG. 2. Vortex tangle generated on the computer,
with a = 0.100, v (= 40. The line filling the unit dimen-
sionless cube is projected onto the plane normal to 7.
The initial configuration from which this configuration
evolved consisted of five vortex rings oriented along
Vy.
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obtained in these reduced units, and then scaled
out. This has special implications for the case

of homogeneous, steady-state turbulence. Sup-
pose one evaluates the reduced line length densi-
ty L,=Q, 'Jd{, for some driving velocity v, by
integrating over the line in a sample volume 2,
and, if necessary, time averaging. Scaling out
to a sampling volume Q =Q,D?, it follows that L
=@Q,D®) *[Ddt,=L,/D? for v,s=v,8/D. However,
if the turbulence is homogeneous, L must be inde-
pendent of the size of the sampling volume, i.e.,
independent of D. Hence D can be eliminated to
yield

L=(L0/U02)Un52/32- (2)

Other average properties have similar scaling
relations. For example, the mutual friction force
density exerted by the superfluid on the normal
fluid,

Ty o=(0, k0 /Q) [ & x[8 X (o, - B8 x5 ]dE, (3)
must obey the relation
—is n=—(psKa/Bz)(Fo/Uo‘g)Unssans- (4)

Such functional relations between the steady-
state properties and the driving velocity are in
fact found experimentally, and are exhibited in a
particularly striking fashion in the recent beauti-
ful work of Tough and collaborators.’

The problem is now reduced to the evaluation
of dimensionless coefficients such as L,/v * and
F,/v2. To carry out this evaluation I have de-
veloped a computer code which can accurately
track the time development of an arbitrarily com-
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FIG. 3. Computed values of the dimensionless coef-
ficients. The error bars denote the estimated statisti-
cal uncertainties in evaluating the steady~state aver-
ages. Lines are drawn to guide the eye.
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plicated set of vortex singularities using the pre-
scription of Eq. (1’). The code also recognizes
line-line crossings, and can make the desired re-
connections if instructed to do so. In a typical
calculation a sampling volume in the shape of a
unit cube with one set of faces perpendicular to
7V, is filled with an initial nonrandom vortex con-
figuration, which is then allowed to develop in
time. Any loop which passes out through one side
of the sampling volume reenters it from the oppo-
site side. This is equivalent to starting with an
initial condition in which the initial vortex con-
figuration in the sampling volume is periodically
repeated throughout all space, and guarantees
homogeneity in the large. It is found that the sys-
tem quickly forgets its initial condition and fluctu-
ates through various states (Fig. 2) in a random
manner. The randomness arises from and is
maintained by the reconnection events.

Figure 2 can be intevpreted as a sample of the
vortex tangle, genevated entively by implementing
our simple dynamical vules on the computer. L,
F,, or any more complicated property of the
tangle can readily be evaluated by taking time and
volume averages over such configurations as they
evolve. Figure 3 shows L,"2/v, and F,'/3/v, com-
puted in this way for values of @ ranging from
0.01 to 0.30 (corresponding roughly to the tem-
perature range 1.0 to 2.0 K). It is found that the
computed ratios are in fact independent of v, over
a wide range, showing that the calculation indeed
produces homogeneous behavior.

The results of Fig. 3 can be compared with the
mutual friction measurements of Ref. 7, which
seem to represent the most exact experimental
realization of the homogeneous turbulent state.

In order to achieve an accurate comparison, the
B used in scaling out to —f‘s » according to Eq. (4)
is evaluated by use of an s” corresponding to the
line length density at which these measurements
were actually made. Uncertainties in @ (7') and in
B (e.g., from the core radius) as well as the ap-
proximations inherent in Eq. (1) make agreement
on the order of 10%-20% the best one could possi-
bly hope for. Figure 4 shows that such agree-
ment with experiment is, in fact, achieved.

I conclude that the approach presented here,
with its emphasis on the importance of topology-
changing reconnections, provides a satisfactory

first-principles description of homogeneous super-

fluid turbulence. The reconnection concept leads
immediately to a plausible model of how the turbu-
lent state sustains itself. The functional depen-
dence of the steady-state properties on the driv-

0.2 B

| 1 1 1 1
ol.O 1.2 1.4 1.6 1.8 2.0

FIG. 4. Comparison of our results with experiment.
The curve is obtained by scaling out the upper curve
of Fig. 3, using Eq. (4) with 8 = 1.0x 1073, The points
are from Ref. 7.

ing velocity arises as a general consequence of
the dimensional nature of Eq. (1). Finally, a
numerical implementation yields predictions which
are in remarkably good agreement with experi-
ment. Unlike previous work, this approach can
readily be extended to investigate the effects of
boundaries, time-dependent driving velocities,
pinning, and so on. Thus it promises to provide
a sound basis for further exploration of this inter-
esting class of problems in superfluid hydrody-
namics.
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