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with respect to volume is very large near the
separatrix. This does not mean that small-as-
pect-r'atio stellarator fields with good surfaces
cannot be found. To find such fields one simply
begins with an unimproved field of smaller as-
pect ratio, which can be obtained by decreasing
the helical amplitude

The main tangible result of this work is a meth-
od for finding nonaxisymmetric vacuum magnetic
fields with significantly increased rotational trans-
form and decreased area of stochasticity and
resonances. The problem of calculating the ac-
tual coils remains. This calculation is do-able
in principle by superimposing coils of various
helicities. However, the determination of prac-
tical (e.g. , modular') coil. configur'ations is a
nontrivial problem. The results of Table I are
encouraging in this respect. The rapid decrease
of the harmonic amplitude with poloidal mode
number l indicates that the distortions of present
coil designs will not be too rich in harmonic
structure.

In addition, this work strongly indicates that
there do exist nonaxisymmetric vacuum mag-
netic fields with a dense set of ergodically cov-

ered magnetic surfaces. No proof has been given,
but since first-order theory significantly reduces
the stochasticity, it is reasonable to believe that
infinite-order theory would produce a completely
nonstochastic system.
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The momentum distribution function, n(p), is determined for liquid He at 1.00, 2.12,
2.27, and 4.27 K from new neutron inelastic-scattering measurements at large momentum
transfers. An improved method for extracting the condensate fraction, n o, from n(p) is
presented and used to obtain new values for n 0 at 1.00 and 2.12 K and a revised value at
1.1 K.

PACS numbers: 67.40.-w

The problem of demonstrating experimentally
that a finite fraction, n„of the atoms in super-
fluid 4He has zero momentum has been of con-
tinuing interest ever since London' first proposed
a connection between the A. transition in liquid
He and the phenomenon of Bose-Einstein con-

densation. A recent resurgence of interest' ' has
centered around the possibility of determining n0
from the temperature dependence of the pair-
correlation function, g(r), via, a method proposed
by Hyland, Bowlands, and Cummings. ' Applica-
tion of this method to g(x) values obtained in a

recent neutron-diffraction study' has in fact
given' val. ues of n, (T) which exhibit a temperature
variation of the expected type, and which are con-
sistent with the best theoretical estimates' "of
n, (0). In view of the recent controversy4 concern-
ing the work of Hyland, Bowlands, and Cum-
mings, ' it is, however, not clear at present what
significance one can ascribe to these values of
+0'

A completely different method, in which n0 is
determined from the momentum distribution
function, n(p), obtained by neutron inelastic-
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scattering measurements at large wave-vector
transfer Q, was proposed even earl. ier by Hohen-

berg and Platzman. " This method has a rigorous
theoretical foundation in the limit Q —~ where the
impulse approximation is valid. " However, nu-
merous attempts" " to use it at finite Q have led
to conflicting estimates of n, (T -1.2 K) ranging
from 0.02 to 0.17. These disagreements are,
we believe, largely attributable to inadequate al-
lowances for the fact that the impulse approxima-
tion is not strictly valid in the Q region of the
neutron measurements because of distortions
caused by final-state interactions and interference
effects. The importance of these distortions was
first pointed out by Martel et al."who also pro-
posed a method for obtaining more reliable val-
ues of n(p) from the neutron measurements.
Woods and Sears" subsequently applied this meth-
od to the neutron results of Cowley and Woods"
and found that n, (1.1 K) = 0.069+ 0.008. Applica-
tion of the improved analysis procedure presented
below to the same results gives the revised value
0.10S+0.027. This value, the new values for 1.00
and 2.12 K which we present below, the best the-
oretical values for n, (0), and the values ob-
tained" fromg(r) are all in very good agree-
ment.

We have recently completed an extensive neu-
tron inelastic-scattering study of liquid 'He at
saturated vapor pressure determining, under con-
ditions of very high resolution, the resolution-
broadened dynamic structure factor, Sn(Q, ~),
forQ=4. 0, 4.5, 5.0, 5.5, 6.0, 6.5, and7. 0A
at temperatures of 1.00, 2.12, 2.27, and 4.27 K.
Following the procedure of Ref. 13, these S„(Q,
v) have been analyzed to obtain the n(p) shown in
Fig. 1. These results represent an average over
the five values of Q in the range 5.0 (Q ( 7.0 A

which corresponds very closely to a half period
of oscil. lation of the 'He-'He total atomic scatter-
ing cross section, " 0, the quantity which governs
the final-state interactions. ' We emphasize that
averaging over such a range is necessary to
minimize the residual. distortions which re-
main" "even after the S„(Q,&u) are symmetrized
about the recoil frequencies hQ'/2m.

The horizontal bar in Fig. 1 indicates the half
width at half maximum (HWHM) of the instru-
mental resolution, 0.12 A ', which is much small-
er than the value of 0.32A ' of Ref. 13. The
n(p) distributions of Ref. 13 are thus slightly
broader than the corresponding distributions in
Fig. 1. Otherwise, there is good agreement be-
bveen them. Note that there is virtually no
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FIG. 1. n (p) for liquid 4He at four temperatures The.
horizontal bar shows the resolution HWHM,

n, = ~/(1 —P), (2)

change in n(p) between 4.27 and 2.27 K. However,
below T), =2.17 K there is a large increase at low

p which is a direct consequence of a finite con-
densate fraction. The reason for the surprisingly
large increase at 2.12 K (just 0.05 K below T ~)
will be discussed later.

We now introduce an improved procedure for
obtaining n, from the n(p). The intrinsic n(p) is
of the form

n(p) = n, 6(p) + (1-n, )n+(p), (1)

where n*(p) is the normalized" momentum dis-
tribution for the uncondensed atoms. The ex-
perimental n(p) are of course broadened both by
the instrumental resolution and by the effect of
the final-state interactions. The latter contrib-
utes a width Ifull width at half maximum (FWHM)]
hp = po', where p is the number density. For our
Q range, 6p is about half the FWHM of n(p) as a
whole and so a distinct condensate peak cannot
be resolved. We again note (Fig. 1) that, above
T~= 2.17 K where n, =0 and n(p) =n*(p), there is
very little dependence on temperature. Since the
effect of thermal excitation and thermal expan-
sion on n*(p) would be expected to be even small-
er below T ~, it thus seems reasonable to assume
that the observed temperature variation of n(p)
below T ~ is mainly due to the change in n, . We
therefore set n*(p) equal to the 2.27-K distribu-
tion, and it follows from (1) that
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TABLE I. The condensate fraction, n p, and related quantities.

Temperature (K) p, (A ') fL p

1.00
1.1
2.12

1.3 + O. l 0.079+ 0.007
1.25+ 0.1 0.069 + 0.008
1.1+ 0.3 0.029+ 0.011

0.49+ 0.07 0.03+ 0.01 0.146+ 0.035
0.44+ 0.07' 0.04+ 0.01 0.109+0.027
0.36+ 0.19 3+ 1 0.008 ~ 0.006

Based on the results of Ref. 13.

where

e = 4n J (n(p) -n+(p)] p'dp, (3)

&c
p=4m f n+(p)p'dp.

Here p, is the cutoff point of the broadened con-
densate peak which we take to be the point where
the integrand in (3) goes to zero.

In using the 2.27-K results for n*(p), we have
neglected the fact that, below T ~, n*(p) is singu-
lar as p —0 with the asymptotic behavior"

n*(p)=n, (ap '+&p '+. . .],

(4)

(5)

where a =mk, T/8m'h'pn, and b =mc/16m'hp (c is
the sound velocity and n, the superfluid fraction,
p, /p). This singular behavior enhances the ap-
parent value of n, as given by (2), and to correct
for this enhancement we must replace (2) by

n. = ~/(1 0+r)- (6)

To evaluate y precisel. y, one must know in detail.
how n*(p) is modified below Tz, and this is not
known at present. It is clear, however, that
there is a substantial enhancement for tempera-
tures near 7'» where n, is small, and a much
smaller enhancement for T =1.0 K. This ex-
plains why n(p) for 2.12 K already exhibits an in-
crease at small p which is about half the total in-
crease shown by n(p) for 1.00 K (see Fig. 1).

To obtain a rough estimate for y, we assume
that the ap ' and bp ' terms in (5) are of impor-
tance up to a momentum p' which we take to be
the lesser of p, or the value p, = a/& at which the
two terms are equal. Integration then gives
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has an almost negligible effect near 1.0 K, but a
very large effect near T), .

In Fig. 2 we show n(p) for 1.00 K (filled circles)
and the quantity (1-n,)n*(p) (open eireles) where
n, = 0.146. The difference between the filled and

open circles represents the broadened condensate
peak [see Eq. (1)]. To determine the intrinsic
FWHM, bp, of this peak we must correct for in-
strumental resolution and the correction depends
on the assumed shape of the peak. Averaging over
the three temperatures studied, we find that, for
a Gaussian shape, b p = 0.97+ 0.18 A

' giving o

=44+8 A', and, for a I.orentizian shape, bp =0.68
+ 0.21 A ' giving 0 = 31+ 10 A'. The good agree-
ment with the known" value, 35+ 2 A', for our Q
range strongly supports our procedure for ex-
tracting the condensate component from n(p). The
n(p) for T = 0 (solid curve in Fig. 2) obtained by
Whitlock eI, a/. ' from a Monte Carlo calculation
appears to be slightly broader than the experi-
mental distribution.

Figure 3 shows a comparison of our new values
(filled symbols) for n, with the values (open sym-
bols) obtained"" "from g'(r) via the method of
Hy1. and, Rowlands, and Cummings. ' There is

y = 4n(ap'+-,'bp"),

which, for the case p'=p„becomes
(7)

(8)

The values of p, , s, p, y, and n, for 1.00, 1.1,
and 2.12 K are listed in Table I. In Ref. 13 it was,
in effect, assumed that n, =&, but we see that P

is indeed important at all temperatures while y

0.00:====--=
-3 0

p (A')

FIG. 2. Comparison of n{p) {filled circles) and {1
—no) n "{p) {open circles) at 1.00 K. The horizontal bar
shows the resolution FWHM. The curve is from a cal-
culation for T = 0 (Ref. 8).
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FIG. 3. The condensate fraction in superfluid 4He.

Filled symbols show our new results obtained from
n (p). Open symbols are from the temperature varia-
tion ofg(x): circles (Ref. 2), squares (Ref. 3), and
triangles (Ref. 19). The x's are from theoretical cal-
culations for T = 0: upper (Refs. 8 and 9) and lower
(Ref. 10). The curve represents a least-squares fit of
Eq. (9) to the experimental values.

2.0 2.5

clearly very good agreement between the values
obtained from the two completely independent ap-
proaches which are based on different types of
measurements. In view of the existing contro-
versy' about the method of Hyland, Rowlands,
and Cummings, we cannot, however, rule out the
possibility that this agreement is fortuitous.

The solid curve in Fig. 3 is the result of a
least-squares fit of the relation

.(T) = .(0)(1—(&/&, )"), (9)

to al.l the experimental values. With T ~= 2.17 K,
we find that n, (0) =0.139+0.023 and n= 3.6+ 1.4.
Most of the many theoretical estimates of n, (0)
lie in the range 0.08 to 0.13. The best values are,
we believe, 0.113 (Refs. 8 and 9) and 0.090 (Ref.
10) which are shown by &&'s in Fig. 3. There is no

significant difference between these values and
our estimate from (9).

In conclusion, we have presented momentum
distributions, n(p), for liquid 'He at 1.00, 2.12,
2.27, and 4.27 K based on new neutron inelastic-
scattering measurements at very high experi-
mental resolution. An improved procedure for
extracting the condensate fraction, n„has been
applied to our new n(p) and to the earlier n(p) of
Ref. 13 to obtain values of np for 1 00, 1.1, and
2.12 K. These values are, we believe, by far

the most reliable estimates of n, obtained to date.
Thus, some 43 years after I ondon's original
proposal, there is now strong experimental evi-
dence that a finite fraction (our analysis indicates
about 13 lo at 1 K) of the atoms in superfluid 'He
are indeed in the zero-momentum state.
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