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From a partial-wave analysis of the KK7t system in the decay J/( —yK+K vr, it is de-
termined that the quantum numbers of the KK7t resonance at 1440 MeV, previously identi-
fied as the E(1420), are J = 0 +. This new particle has been named the ~.

PACS numbers: 14.40.Cs, 13.40.Hq

We have identified a pseudoscalar state with
mass M =1440'„,", MeV in J/g radiative decays.
This state was previously reported by the Mark
II, ' but was tentatively identified as the E(1420)
(a state' with spin and pa. rity 1+) a.s the spin of
the state was not known. We, in collaboration
with the Mark II group, have named this pseudo-
scala. r the a(1440). ' Although the theoretical in-
terpretatiori of this state is uncertain, ' possible
interpretations are a two-gluon bound state or a
member of a radially excited qq nonet.

In this Letter, we report on a partial-wave
analysis of the K'8' "7t' system in the process

The analysis is based on a sample of 2.2 & 10'
produced 8/( events. The data were collected
with the Crystal Ball Detector at the Stanford
Linear Accelerator Center e'e storage ring fa-
cility SPEAR at the peak of the J/g(3095) reso-
nance. The detector consists primarily of a seg-
mented array of Nal(Tl. ) crystals for high-reso-
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lution measurements of the energy and position
of electromagnetic showers. The photon energy
resolution is 0/E= 2. 6%/E'/' (E in GeV) and the
photon angular resolution is 1-2 deg, depending
on energy, The solid angle coverage of the main
array is 93% of 4n sr and is extended to 98%
with crystals in the end-cap regions. The beam
pipe is surrounded by magnetostrictive spark
chambers and multiwire proportional chambers
for charged-particle tagging and tracking. The
innermost spark-chamber layer covers 94/0 of
the solid angle. Details on the detector, event
trigger, and data reduction are described in de-
tail elsewhere. '

Figure 1 shows the K'K m' invariant-mass
distribution for events which have two charged
tracks and three y's, each with observed energy
greater than 40 MeV, and which satisfy three-
constraint fits' to (1) with y'(15. As there is no
particle identification for charged particles, the
kaon identification is by kinematics alone. A
resonance is seen near 1400 MeV which we name
the t.. Figure 2 shows the Dalitz plot for events
with 1400 (M«, &1500 MeV. Events are seen to
be concentrated in the upper right region of the
plot. This region corresponds to events with EK
invariant mass near threshold. The shaded re-
gion in Fig. 1 shows the Z'K m invariant-mass
distribution for events with M~~&1125 MeV. The
background

I
which is due largely to processes

other than (1)] is reduced considerably compared
to the signal. Thus, the resonant structure ap-

4/g —y L, L-K'K n' (2)

was determined to be 0.120 +0.024 by Monte Carlo
calculation. From this and the number of ob-
served c events, the product branching ratio for
(2) is calculated to be

B(J/( —y L) x B(L —KKv) =(4.0*0.7+1.0) x 10 ',

where the branching ratio has been corrected to
account for all EEn charge combinations. This
result is in good agreement with the Mark II re-
sult. '

The spin of the c was determined from a par-
tial-wave analysis of the K+K-po system 8 Con

pears to be correlated with a low-mass A'K en-
hancement. We interpret this as evidence for the
decay of the L into 5 (980)w. Note, however, that
the K*(892) ba.nds on the Dalitz plot overlap in
the 6 region, thus possibly causing confusion as
to whether the decay is primarily 5 m or A'*A

+ C.C.
A fit to the A'K m' invariant-mass distribution

with a relativistic Breit-Wigner resonance con-
voluted with a. Gaussian (o = 20 MeV, correspond-
ing to the fitted mass resolution) plus a polynom-
ial background yields 174 +30 resonance events.
We obtain' the following t, resonance parameters:

M =1440+,, MeV, I' =-55",,'MeV,

where estimated systematic uncertainties are in-
cluded in the quoted errors. (The mass error is
dominated by systematic uncertainties while the
error in the width is predominantly statistical. )
The detection efficiency for
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FIG. 1. K+X: 7T invariant-mass distributions for
events consistent with J/g-yK K 7i . Shaded region
has the requirement 3fzz & 1125 MeV.

FIG. 2. K K 71 DaIitz plot for events with 1400
- Il/Izg ~& 1500 MeV. Solid curve shows boundary for
'lJ~g = 1450 MeV. Dashed 1ine shows MJ~g= 1125 MeV.
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contribution [Fig. 3(c)] shows clear evidence for
resona. nt structure in the L signal region (1400
~ M«, &1500 MeV). Thus, 4 c=0 ' is preferred
over 4 c= 1+'. (The C parity is established as
even by the production mechanism. ) In addition,
we find the 90% confidence-level upper limit

B( L -K*K+c.c.)
B( L K+K+ c.c.) + B( L 51T)

Although the full partial-wave analysis did not
include spin-2 amplitudes, an analysis" of the
angular distribution W(6, 6~, p~) for the process

g -y L, L-5m
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FIG. 3. Partial-wave contributions as functions of
KK~ mass for (a) KK~ Qat, (b) K"K+ c.c. (J = 1+),
and (c) 67t (J~ = 0 ).

determined relative probabilities of 10 ' and 8
& 10 ' for spins 1 and 2 relative to spin 0.
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tributions from five partial waves were included
in the analysis:

KKm flat, 5m (J =0 ), 5w (7 =1'),
K*K+c.c. (J =0 ), K*K+c.c. (8 =1').

J =0' is not allowed for a state which decays
into three pseudoscalars. J =1, although al-
lowed for K*K+c.c., would require the Dalitz
plot to vanish at the boundaries, which is incon-
sistent with the data. Spins greater than 1 were
not considered. Contributions from all partial
waves except KRm flat were allowed to interfere
with arbitrary phase. For each isobar contribu-
tion, the full angular decay distributions were
included in the amplitudes. The ~ and E* helic-
ities were allowed to be free parameters. The

and K* resonance parameters were taken to
be the standard values. '

The analysis was done independently in each of
five 100-MeV-wide bins for events with %Em
masses between 1300 and 1800 MeV. Partial
waves which did not contribute significantly to
the likelihood were eliminated, leaving only three
partial waves which provided significant contribu-
tions. These contributions, corrected for detec-
tion efficiency, are shown as functions of RA~
mass in Fig. 3. The K*K+c.c. (J =1') contribu-
tion [Fig. 3(b)] is relatively small and independ-
ent of mass. On the other hand, the 5w (8 =0 )
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It is found that the embedding of hypercolor in grand unification schemes requires an
extended unified model of the form G (3G(3G where G~ SU(3) S SU(2) i3U(1) is an ordinary
grand unified simple group. For G = SU(7) properties of such a unified theory with nat-
urally three ordinary families are explored.

PACS numbers: 12.10.En

Theories of elementary-particle interactions
based on unifying (but broken) gauge symmetries
solve many theoretical questions, but introduce
some of their own. Since symmetry breaking re-
quires scalar fields (Higgs mesons), the couplings
of fundamental scalars are new independent pa-
rameters, which must obey precise phenomeno-
logical constraints if the theory is to rnatch the
low-energy world. Hypercolor theories were in-
vented to treat the Higgs particl. es of low-energy
symmetry breaking not as fundamental but as
composites, the hyperpions of a hyperquark
dynamics.

The hypercolor idea, however, has had difficul. -
ty in providing realistic masses for ordinary
fermions (quarks and leptons}. Both extended-
hypercolor and supersymmetric models have dif-
ficul. ties, but an alternative approach has been
proposed' in which fundamental (superheavy)

seal, ars couple light fermions to hyperquarks,
and a finite anomalous dimension compensates
the resulting superheavy-mass suppression.

If hypercolor is a reality, then the grand unifi-
cation idea should be extended to include it. The
present paper presents a model showing that this
is possible, together with discussion of the con-
straints that complicate the model.

Hypercolor can be embedded in higher-rank
simple symmetry groups, but a usual consequence
is fast proton decay' because of the presence of
fermions carrying both color and hypercolor.
The only remedy for this seems to be, as sug-
gested by Georgi, ' to choose a semisimple gauge
group (augmented by discrete symmetries )„ to
identify hypercol. or and color in different factors,
and to restrict fermions to representations of
the type (R, 1)&(1,R} (in the two-factor-group
case). Thus hyperquarks are always color sing-
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