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Experiments on the Belousov-Zhabotinskii reaction in a stirred flow reactor reveal be-
havior that is strikingly similar to that generated by one-dimensional maps with a single
extremum. In particular, a period-doubling sequence is observed that leads to a regime
containing both chaotic and periodic states. Within the experimental resolution the order-
ing of the periodic states is in accord with the theory of one-dimensional maps.

PACS numbers: 05.70.Ln, 47.70.Fw, 64.60.-i, 82.20.-w

We have conducted experiments on a complex
chemically reacting system (with about 25 chem-
ical species) which exhibits, as a function of the
flow rate of the chemicals through the reactor, a
sequence of periodic and chaotic states that is in
good agreement with that exhibited by unimodal
(single-extremum) one-dimensional (1D) maps.
From the data we have constructed 1D maps that
correspond to the different periodic and chaotic
states.

A decade ago Metropolis, Stein, and Stein'
showed that unimodal maps, x,,,=xf(x,), exhibit
universal (map-independent) dynamics as a func-
tion of the bifurcation parameter A. Analysis of
higher -dimensional systems has led to the con-
jecture that, if such a system were to exhibit a
period-doubling sequence, then the dynamics of
the system would be similar to that of a 1D
map.**® Indeed, period-doubling sequences have
been discovered in recent experiments* on a
variety of physical systems, and the observed
behavior for at least the first few doublings has
been in accord with the theory for 1D maps.
However, 1D maps were not obtained in any of
those experiments, and the rich dynamical struc-
ture that 1D maps exhibit beyond the period-dou-
bling sequence has been observed only in the

experiments of Testa, Pérez, and Jeffries* on
the simplest nonlinear physical system that has
been studied, an electrical oscillator with three
degrees of freedom. We will now review the
properties of 1D maps and then present the re-
sults of our experiments,

1D maps.’*—A method called symbolic dynamics
can be used to show that the dynamics of unimodal
1D maps of the interval [0, 1] is exhausted by the
periodic states of the “U (universal) sequence”
of Metropolis, Stein, and Stein' and the chaotic
states of the ‘“reverse bifurcation sequence” of
Lorenz.® The theory uses only the unimodal
property of the map to deduce the nature of the
states and the order in which they appear as a
function of the bifurcation parameter A. Feigen-
baum and others, making the additional assump-
tion that the map has a quadratic extremum,
have obtained detailed predictions for the scaling
of various dynamical quantities.®*® We will con-
fine our discussion to the results of symbolic
dynamics theory since it is the ordering and na-
ture of the states and not their scaling properties
that have been determined in our experiments.

We begin with the mechanics of map iteration.™®
For a given value of A one picks any initial condi-
tion (except for a set of measure zero) and iter-
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ates the map until transient behavior disappears.
Further behavior of the sequence {x,} can be
either periodic or chaotic. For the purpose of
categorizing periodic states we may restrict our
attention to the iterates of the point ¥, where f(¥)
is the extremum of the map.' If the nth iterate
of X falls to the right of X, then the nth character
of a descriptive character string is set to “R”;
otherwise it is set to “L.” Thus, for example,
the 4-cycle in Fig. 1 is described by the string
“RLR” where a character for the initial condi-
tion ¥ (neither R nor L) is omitted. Periodic
states may be uniquely classified also by the or-
der in which points on the x, axis are visited.
For the example in Fig. 1 the iteration pattern
can be seen to be 2-0-3-1.

Consider the dynamics of a map as a function of

Xx. For small X the map has a fixed point (1-cycle).

If A is increased the 1-cycle eventually loses its
stability to a 2-cycle in a pitchfork bifurcation.
There exists an infinite sequence of such period-
doubling transitions that converges to a 2% -cycle
at finite A =2.2

The dynamics past A, is very complex.”® Fun-
damentals of all integer periods (the first funda-
mental was the 1-cycle) appear and undergo their
own complete period-doubling sequences. Thus,
for example, there is a 3-cycle and its “harmon-
ics” (3 x2" -cycles for all positive n) for some
interval in A. The larger the integer, the larger
the number of allowed states; for example, there
are three distinct 5-cycles (RLRR, RLLR, and
RLLL) and 27 distinct 9-cycles. In Table I we
list in order of increasing A some of the periodic
states of period less than 11, along with their
“RL...” strings and iteration patterns. The full
U sequence consists of the extension of this table

5

1
f(x) - —
Xns ; l
| |
1 ¥
P |
gy
1
1
|
55
31
% ’I‘z Xo X3%)
X

FIG. 1. The map x,,{= Ax, (1 —x,) with A= 3.4985617
exhibits a 4-cycle of the type RLR.
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to all allowed periodic states. Each allowed pat-
tern occurs only once, and at any given A not
more than one periodic state is stable.

Additional structure in the region past A, was
described by Lorenz.° In any system of finite
resolution there exist gaps between various
period-doubling sequences. These contain cha-
otic (intrinsically noisy) “reverse bifurcation se-
quences” which appear at the end of each period-
doubling sequence; these sequences show period
halving with increasing X back down to the appro-
priate fundamental. While the chaotic states do
not exist for intervals in A, there is a finite prob-
ability of encountering a chaotic state.®

Expervimental methods.”—We have conducted
experiments on the Belousov-Zhabotinskii reac-
tion in a well-stirred reactor as a function of the
flow rate of the chemicals through the reactor
(with input chemical concentrations held fixed).
The time dependence of the concentration of one
of the chemicals, the bromide ion, was meas-
ured with a specific ion probe, as described
previously.”

Results.—The states listed in Table I are in
fact the observed states. Time series records
for several of the states are shown in Fig. 2.
Presumably, unobserved U-sequence states exist
over flow rate ranges too small to resolve in our
experiments; indeed, our data files contain many
short segments corresponding to U-sequence
states not included in Table I—the table lists
only states that were observed in several runs.

The ordering of the states in Table I was diffi-
cult to determine definitively because the pump
had to be recalibrated for each run and not every

TABLE 1. Some elements of the U sequence.

Period Sequence Pattern
1 oo 0
2 R 0-1
2% 2 RLR 2-0-3-1
22% 2 RLR’LR 2-6-0-4-3-7-5-1
10 RLR’LRLR 2-8-6-0-4-3-9-5-7-1
6 RLR? 2-0-4-3-5-1
5 RLR? 2-0-4-3-1
3 RL 2-0-1
2% 3 RI’RL 2-5-3-0-4-1
9 RL’RLR’L 2-8-5-3-0-6-4-7-1
5 RL?R 2-3-0-4-1
4 RI2 2-3-0-1
2% 4 RLSRIL? 2-6-3-T-4-0-5-1




VoLUME 49, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JuLy 1982

20 ¢ 0 o 2x2 e ° °
L

Wil

3e o e o 2x3 e [ [

FIG. 2. Observed bromide-ion potential time series
with periods t (115 s), 27, 2x 271, 67, 57, 37, and
2x 37; the dots above the time series are separated by
one period.

state was observed in a given run, and because
even with our high signal-to-noise ratio, a state
identified as periodic in records of finite length
could in some cases be its reverse-sequence
counterpart (our data are consistent with the
identification of all states as being periodic).
Also, a slow drift in flow rate, characteristic
of peristaltic pumps, resulted in data files that
sometimes contained two (occasionally more)
different periodic states; however, the periodic
states observed in the same file were always
found to be close together in the U sequence—this
in itself is strong evidence for the existence of
the U sequence in the chemical system.

The data taken as a whole support the ordering
given in Table I. Further confirmation of the U
sequence is provided by the 1D maps described
in the following section.

Phase portraits and 1D maps.—The well-stirred
Belousov-Zhabotinskii reaction may be described
by the instantaneous concentrations of ‘about 25
chemicals. It is not feasible to monitor all these
quantities and thus determine the phase-space
behavior of the system. For many purposes,
however, embedding theorems® justify the use of
a single chemical concentration, B(¢) (i=1,...,
«), to construct an m-dimensional phase portrait
with the vectors {B(t,), B(¢;+T), ..., B{t;+(m
~1)T)}, for sufficiently large m (and for almost
any time delay 7).

In Fig. 3(a) we show a 2D projection of a 3D
phase portrait constructed with the third axis
normal to the page. Our studies of the resulting
strange attractor (an attracting set in phase
space with the property that infinitesimally sepa-
rated trajectories exponentially diverge on the
average) suggest that it is essentially two-dim-
ensional and that a 3D construction of the phase
portrait is adequate for our system.”® The con-
nection between continuous motions on the attrac-
tor and a unimodal map is provided by the Poin-
caré€ séction, the intersection of an (m —1)-di-
mensional hypersurface with “positively” directed
orbits in m space. The intersections of our
sheetlike attractor with a plane normal to the
page | through the dashed line in Fig. 3(a)] lie
approximately along a parametrizable curve, not
on a higher-dimensional set.’® Thus within this
resolution the parameter values at successive
intersections provide a sequence {x,} which de-
fines a 1D map, as shown in Fig. 3(b). The shape
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FIG. 3. (a) A 2D projection of a 3D phase portrait for a chaotic state. (b) A 1D map constructed from the data
in (a) (see text). (¢) A 1D map for the nearby 6-cycle RLR®. In (b) and (c) the curves are drawn to guide the eye.
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of the map evolves slowly with flow rate, and so
its shape in the periodic regions is known from
the chaotic maps for nearby flow rates. For
example, the map for a 6-cycle is shown in Fig.
3(c). The iteration pattern, 2-0-4-3-5-1, can be
read from the map.

Conclusions.—In the parameter range studied
here the Belousov-Zhabotingkii reaction exhibits
the U sequence of 1D maps. The iteration pat-
terns and, within the experimental resolution,
the order of occurrence of the periodic states
are in accord with the theory for 1D maps. To
our knowledge these observations provide the
first example of a physical system with many de-
grees of freedom that can be modeled in detail
by a 1D map.
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