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Explanation of Flow Dissipation in >He-B

We propose an explanation for the large dissipa-
tion observed by Eisenstein and Packard® in U-
tube oscillations of superfluid 3He-B. It turns
out that the qualitative change in behavior (com-
pared to superfluid *He) is simply due to the in-
creased viscosities, which are four orders of
magnitude larger in superfluid ®He than in *He.?
This means that a dissipation mechanism, not
previously discussed (and negligible in *He), be-
comes important. The observation does not
therefore bring into doubt our basic understand-
ing of the superfluid phases.

The experiments' show that the flow of liquid
3He-B between two reservoirs connected by a
capillary and driven by the height difference be-
tween the levels is overdamped, and not oscilla-
tory as found in the classic experiment in super-
fluid *He.® Furthermore, the authors find no
dissipation mechanisms that can lead to a quality
factor less than 100. Here we consider the dissi-
pation implied by the conversion of superflow to
normal flow that occurs near the liquid surfaces
so that the excitations of the normal fluid can
follow the surface. This extra dissipation may
be treated within the macroscopic two-fluid equa-
tions, and is governed by the mean of the “second
viscosity” ¢, and shear viscosity 7.

The equations we use are the standard two-fluid
equations.® In the layer near the surface we may
neglect inertial effects so that the important
terms are

p-laxp—ps§3812(vs—vn)=0’ (1)
p-laxP"'(neff/pdz)vn:O' (2)

The first equation is the linearized static equa-
tion for the superfluid velocity v, with P the
pressure, p, the superfluid mass density. The
gecond equation is the linear equation for the
mass current. Although the profile of v, (and
hence v,) over the reservoir is not uniform, we
neglect this effect and consider only some aver-
age velocity over the cross section. The second
term in Eq. (2) then represents the viscous force
due to the sidewalls (separation d), with n.s an
effective shear viscosity. A uniform pressure
across the section gives 7n.s;s=127. We also ne-
glect the second viscosity coefficients ¢, and ¢,
entering the normal fluid equation, since these
are probably small,’ and following the conclusions
of Ref. 1 we neglect temperature effects, which
may however be easily included. Finally we
make the approximation of incompressible flow
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in the reservoirs,
pPsVs +p, v, =const, (3)

and assume the macroscopically plausible bound-
ary condition that v, is equal to the velocity of
the surface.

Equations (1)~(3) lead to a normal-fluid velocity
decaying to zero away from the liquid surfaces
over a healing length A =(0*¢,/7esf) Y2 d implying
a pressure drop over this depth [given by Eq. (2)]

6P = p(&ynetr) V2 1/d, (4)

with x the change in the height of the surface and
% its velocity. The equation of motion for the U-
tube oscillations are obtained in the usual man-
ner, but with 6P subtracted from the driving pres-
sure head pgx. We find Eq. (1) of Ref. 1 with
damping coefficient L =(p,/p)(a/A)(dl) Y gane”)l/z
and characteristic frequency w given by w?=2(p,/
p)a/A)(g/1). Here a/A is the ratio of cross-sec-
tional areas of capillary and reservoirs, and /

is the capillary length.

Using the theoretical value® of p¢, ~9.2 cm?
sec”!, and np~'~0.36 cm? sec™ at 0.7 mK from
Ref. 6, we find rather good agreement with ex-
periment. It is easiest to compare the quantity
2L/w? = (&3nesr) 2/ gd, from which most geometric
factors cancel. For this quantity, and 4=0.02
cm (Ref. 1), we find the value 0.3 sec, compared
with the 0.5 sec estimated from the experimental
data. The scaling of L with w,? is also in rough
agreement with experiment. Considering the
crudeness of the calculation we consider this
agreement satisfactory.
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