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Electron heat transport is studied by numerically solving the Fokker-Planck equation,
with a spherical harmonic representation of the distribution function. The first two
terms (f0, f&} suffice, even in steep temperature gradients. Deviations from the Spit-
zer-Harm law appear for A/Lz I (mean free path}/(temperature gradient length)] )0.01,
as a result of non-Maxwellian fo. For &/L~ )1, the heat flux is —,

' of the free-streaming
value. In intermediate cases, a harmonic law describes well the hottest part of the
plasma.

PACS numbers: 52.50.Jm, 44.10.+i, 52.25.Fi, 52.65.+z

Laser-plasma interactions are modeled with
fluid codes' in which heat transfer is described
by the Spitzer-Harm heat diffusion law. How-

ever, this law overestimates the heat flux near
the critical surface because of the steepness of
the temperature gradient, ' and the codes usually
limit the heat flux Q to a fraction f of the "free-
streaming" value QFs=nKT, (RT, /m)' '.' The
fact that f needs to be a small number (0.03) to fit
experimental data' has prompted research into
the mechanisms responsible for this "flux inhibi-
tion. ""' Furthermore, near the ablation front,
the Spitzer diffusion law predicts a very small
heat flux because of the low temperature, but
cannot describe preheat by hot electrons stream-
ing from the corona. Inward heat flow strongly
influences the target behavior (ablation, lateral
thermal smoothing, etc.).' Also, in linear devic-

~

es, such as 0 pinches, heat flow at the ends is
the main energy-loss mechanism, and any heat-
flux inhibition would have important consequenc-
es"

To obtain more insight into heat transport, it is
necessary to solve the electron kinetic equation:
the Vlasov equation with Fokker-Planck collision
operators to describe both electron-electron and
electron-ion collisions. Such a computation may
be done either by particle simulation" or by an
expansion in spherical harmonics. ' We have
chosen the latter method.

The distribution function is written

f(r, v, t) = Q f (x, v, t )I', ( p),
l =0

where p. =v„/v. The advancement of the f,'s in
time is given by

ef, e f &+i eE l Bf, , l —1 /+i &f„, f,„
&x &x 2l —1 ' ' 2l+3 '" m 2l —1 &U U

' ' 2l+3 R v

(2)

where F is the self-consistent electric field.
&~(v), D,~(~), and C(v) are, respectively, the
coefficients of scattering, parallel diffusion, and
friction. They are computed by integration over
f„ i.e. , anisotropy is neglected when computing
the collision operators, as in previous work. ' '
Numerical details may be found elsewhere. '

In the present work, we have solved the follow-

ing problem: a, plasma. slab of length I- contained
between two thermostatic walls at temperatures
T, and T,. The electrons which reach a wall are
replaced by a half Maxwellian distribution at the
prescribed temperature and at a rate such that
the current is cancelled. The ions (Z =5) are
assumed cold, immobile, and of uniform density
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as in previous work. ~ ' This problem is con-
ceptually simpler, as it involves only transport,
than the problem solved in Refs. 4 and 6, where
the temperature gradient is maintained by heat-
ing which interacts with transport. In Refs. 5
and 7, thermostatic boundary conditions were
used, but we have used larger values of T,/T,
and have included the E field and the collisions
self -consistently.

The simulations are all initialized by a pre-
scribed temperature profile (from T, to T,) and
with the assumption that, everywhere, the elec-
trons are isotropic and Maxwellian. Initially,
anisotropic components build up and some elec-
trostatic oscillations are seen, but these quickly
damp away (because of collisions). We then see
heat flow from the hot to the cold region, and an
advancing heat front. This transient state is of
physical interest, and will be discussed later.
When the heat front reaches the cold wall, we
see a steady state with uniform heat flux and
time-independent temperature profile. It is t»s
steady-state situation which we have examined
most closely, and with the most varied param-
eters.

Most simulations used a temperature ratio (T,/
T,) of 2, but a, few used 4 and one used 9. The
length of the plasma slab (L) was varied from
0.6A. to 160k., where X is the mean free path (mfp)
of an electron of energy ~2K(T, + T,)/2. Most
simulations used six terms in the Legendre poly-
nomial expansion of the distribution function (N
= 5), but comparisons were made with more (N
=15) and fewer (N=1) terms

As expected, the simulation with a very long
slab, I, =160k, T,/T, =2, gave the Spitzer result
to within 3%. On the other hand, a collisionless
run was made and gave an upper limit to the heat
flow. This required many terms in the angular
expansion (N = 15) to give the correct value. How-

ever, in all collisional cases, including L =0.6A. ,
N = 5 was entirely adequate (approximately 1%
change in Q) and N=1 was found to be sufficient:
For L =10k. , the change in Q was 5%; for L
=0.6X, Q changed by 20/o as compared to the N
=5 simulation. This does not imply that the high-
order terms (f„f„...) are negligible in magni-
tude, but that their influence on f, (which describ-
es heat flow and current) and f, (temperature and
density) is small.

Figure 1 summarizes our steady-state results.
Each curve corresponds to a different simulation,
labeled by its L/X and T,/T, values. Each point
on each curve is one spatial point. Local values
of temperature T, temperature gradient length
Lr, and mean free path X (evaluated at 23KT)

are used to calculate the local Spitzer-Harm
heat flux Q &H, and hence the ratios Q/Qs„and
A/Lr. Also included in Fig. 1 are four curves
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FIG. 1. Reduced-variable plot of the simulation
results. For steady-state results, the curves are
labeled by the reduced slab length L/X, where A, is
evaluated at energy &K(Tg+ Tp)/2. Solid, dash-dotted,
and dashed lines, respectively, correspond to temper-
ature ratios T&/Tz= 2, 4, and 9. For transient results
(dotted lines, system L/7 = 20, T,/T~= 4), the curves
are labeled by the reduced time t/7. . Curves A. and B
are empirical best fits.
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FIG. 2. Profiles for a transient situation. The three
upper curves are temperature profiles, at various
times t/7. . The bvo lower curves are profiles of the
simulation heat flux Q and of Spitzer's heat flux Q gH

at time t/7-~ 24.
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at different times (f/T =12, 24, 48, 96, where T

is the mean collision time), for the non-steady-
state simulation (L/X =20, T,/T, =4).

The lower Q/Q, H values on each curve corre-
spond to the hottest part of the plasma, and these
lie close to curve A. ,

which was obtained by Khan and Rognlien, ' in
their T,/T, = + simulations. For comparison,
curve B is the simple harmonic law Q~=[Q» '

+(0.3Q Fs '] '. Our simulations have reached
values of Q/QFS as high as 0.3, in agreement
with Refs. 4 and 7, as opposed to only 0.1 in Ref.
6. This is because we have run the code with
steeper temperature gradients (higher A/L~):.
compare our Fig. I to their Fig. 2.

Whereas curve A describes the hot part of the
plasma well, the colder parts lie above it, as a
result of nonlocal effects: hot electrons stream-
ing from the hot to the cold region. At steady
state, this difference is seen to be higher for
larger values of T,/T, . In the transient state,
the heat flux in the cold region is seen to exceed
the Spitzer-Harm value considerably, again be-
cause of hot electrons. This appears more clear-
ly in Fig. 2, where we have plotted temperature
profiles, at times t=o and t=247, as well as the
heat fluxes Q and QSH at t=24T. In the hot region,

Q is smaller than QSH, whereas in the cold re-
gion, Q is greater than QSH but less than Q in
the hot region: QSH diminishes by a factor of
100, but Q diminishes by a factor of 10 only.

The key to the observed heat fluxes is seen in
Figs. 3 and 4. In Fig. 3, the plot of the isotropic
part of the distribution function f, vs v' at the
center and near each end shows a bi-Maxwellian
behavior: a hot component at the hot tempera-
ture, whose density diminishes with distance
from the hot boundary, and a main component
with a bulk temperature which also diminishes
from left to right.

In Fig. 4, we compare distribution functions in
the center of the simulation region. We plot f,e'
and f,v' from the simulation, and f» v' and f,~v'
where f, M is the local Maxwellian and f, M is
evaluated "a la, Spitzer" with use of foM [i.e. ,
using Eg. (2) with /=1, f, -=f, ~, and terms &f,/Bt
and -f, neglected]. It is seen that the Maxwell-
ian assumption yields a large f», very different
from the simulation f,. The ratio f,z/f, ~ is very
large at high velocities, while f,/f, remains
modest (&1.5). Even in the steepest gradients
(L/%=0. 6), we , have always had f,/f, &2. (Note
that for a beam, f,/fo =3; for a semi-isotropic
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FIG. 3. Isotropic component f p vs square velocity
v ~, near the hot wall (solid line), at the center (dash-
dotted line), and near the cold wall (dotted line). The
slab parameters are L/A. = 5, T&/T&= 4. v' is in units
of X(T', +V;)/m.

FIG. 4. Comparison off p from the simulation, local
Maxwellian fp~, f, from the simulation, f&~ evaluated
h la Spitzer with f p from the simulation, and f&& eval-
uated h la Spitzer with local Maxwellian f pM, All f p

and f &
have been multiplied by v '.
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distribution, f,/f, =1.5.)
The explanation is twofold: In cold regions, f,

is larger than f«at high velocities, as a result
of the hot tail, and in all cases f, is smaller than

f, M. To explain this latter result, we have plotted
f, ~u in Fig. 4, with f, ~ calculated a la Spitzer by
using the simulation result for f,. f» is seen to
be close to the simulation result f,. This is to
be expected, because sf, /&t is found small and f,
has a small influence as shown above. A careful
examination of the calculation of f,M and f»
shows that the main reason why f» is smaller
than f, z is that the two driving terms v &f,/ax
and E &f,/&u cancel each other out to a higher
degree in the former case (-90/~) than in the
latter (-50@). This is related to the tendency of
the energetic part of f, to behave like a uniform-
temperature, nonuniform-density, Maxwellian
distribution, for which

v sf,/Bx- sf, /sv-v exp(- ,'mv'/ZT, ) .-
These properties are specific to electron trans-
port, and have no equivalence for photons, neu-
trons, fast ions, etc.

Not shown in Fig. 4 is f,* evaluated by the meth-
od of Ref. 9: f,*=min(f, &,f, M) with E chosen to
cancel the current. In hot regions, it would be
at least in qualitative agreement with f„but in
cold regions f,* is much smaller than f,.
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An analytical method is developed for the investigation of the nonlinear state resulting
from instability saturation by resonant mode coupling.

PACS numbers: 52.35.Py, 52.35.Ra

An important problem in plasma physics is to
determine the nonlinear state from a linear insta-
bility. One of the saturation mechanisms of pl.as-
ma instabilities is the resonant mode coupling of
energy in the unstable wave to other waves which
are linearly damped. The simplest model. of this
process is the nonlinear decay of a coherent un-
stable wave into its subharmonic, which is de-
scribed by the following system:

i(dA, /dt —y,A, ) =A, ' exp(- ib. &ut),

i(dA, /dt+ y,A, ) =A,A, * exp(+ ib, &ut),

where A, =~A,
~ exp(ip;), j=0,1, are time-de-

pendent complex wave amplitudes, A,. * is the
complex conjugate of A, , y, is the growth rate of
the high-frequency wave A, and y, the damping
rate of the low-frequency waveA» ~& is the mis-
match in the frequency resonance, and ampl. itudes
have been normalized so that the coefficients of
nonlinear terms are 1. Numerical. investigations
of this system have shown that nonlinear satura-
tion of the instability occurs if 6 u& & 0 and for y, /
y, large enough. " If so, the time behavior of
the wave amplitudes and phases is either periodic
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