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Exact Solution of the Scalar Wave Equation with Focused Gaussian Gain
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An exact analytic solution of the scalar wave equation in a rotationally symmetric
focused-Gaussian-amplifying medium is constructed from coupled Gaussian-Laguerre
solutions of the free-space wave equation. The solution allows for the analytic con-
struction of the characteristic eigenmodes of the system and has direct application to
Baman, dye, and free-electron lasers.

PACS numbers: 42.20.-y, 42.60.He, 42.65.Cq

This Letter addresses an important practical
problem of coherent beam propagation in media
in which a spatially nonuniform gain coefficient
(gain function) is produced by a focused Gaussian
beam. This situation arises in laser amplifiers
that are optically pumped, such as dye lasers and
Haman lasers, and also in free-electron lasers.

A similar problem of propagation in the pres-
ence of a transverse quadratic gain variation was
previously analyzed by Kogelnik. ' Cotter, Hanna,
and Wyatt' applied Kogelnik's quadratic solution
to the present case by replacing the Gaussian dis-
tribution with a parabolic one. To account for the
focused gain function, they used additional ap-
proximations. Other authors have also attempted
to solve this problem. '4 They found the self-
growth rates for some of the lower-order free-
space modes, but did not consider the full problem
including coupled-mode effects which are neces-
sary to properly describe propagation in all but
the lowest-gain limit. In this paper we show that
if the gain function is proportional to a focused
Gaussian distribution, an exact solution of the

scalar wave equation can be found.
We begin with the scalar wave equation in the

paraxial and slowly- varying- envelope approxima-
tion. In the presence of a prescribed gain func-
tion at each point in space, &(x,y p), we have

(v, ' —2ika. )h =-ikGS; v, '=s„2+e,',
where & =2&/+ is the wave number of the propaga-
ting field and solutions are of the form E(3t, ,y, z)
=@ (r,y, z)e'"' "'. Since G has rotational sym-
metry, it is natural to use cylindrical coordi-
nates. We expand h in a complete set of ortho-
normal Gaussian-Laguerre functions Up (r, p, z)
which are referred to as modes of free space',

&(,~, )=El', '()U, '(, ~, ;I, .), (2)
P, l

where the complex mode amplitudes, Vp'(z), are
functions only of &. The free-space modes, U~',
are functions of &, p, & and depend on the parame-
ter k [set equal to the wave number of Eq. (1)]
and on &„ which is half of what is commonly
called the confocal parameter and is left unspeci-
fied at this point. In explicit form, U~ is given
by'

where & is conventionally called the spot size and
is defined by (u' = (2z,/k)[1+ (z/z, )'], I-p' are the
associated Laguerre polynomials, and R is the
phase-front radius given by R =zo[(z/zo) +(z,/z)].
Substitution of Eq. (2) into Eq. (1), multiplication
by Up

~ +(r cp z) and integration over the trans-
verse coordinates, & and p, gives the following
set of ordinary linear coupled differential equa-
tions in & for the mode amplitudes. Only modes
of the same rotational index l are coupled togeth-
er by the rotationally symmetric gain.

~~~ere

6 =&f deaf rdr[U ~ *G(r,z)U '].
The spatial dependence of the gain function is
taken as

and the Gaussian spot size of the gain function,
„ is given by

&l'p '(z)/« =Zp ~p p'(z) i' '(z), (4)
~,' = (2z,/k, )[1+ (z/z, )'].

The parameters g, and &, are specified by the
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(7)

where

gain. We now choose the value of z, in the field expansion of Eq. (2) as equal to the value established
by the prescribed gain function of Eq. (6), and we also choose the two coordinate systems describing
the gain function and the propagating field to have coincident origins. Evaluation of the coupling ele-
ment G~ ~'(z) of Eq. (4) then gives

G»' =(~~.i~~, ') exp[ »-(P'-i) tan '(~/~. )]Q, &'(V),

P+/ P +E (P —m+ l)! 2(q ) 2,pi p
QPP (P)=P (, f) ( f), Z ~, ~ (p )t & (1 —&) (P -0)'

dVp '/d8 =+pMpip'(9)Vq'(8),

where

M, .p'(8) =p. G~Q, p'(l)) exp[-2i(p' —p)8]

(-))/2&9&1)/2), and where

G, =gP, /2~.

(10)

We have introduced the quantity G~ to replace g,
as a descriptive parameter, since G~ corresponds
to the plane-wave-field gain coefficient. ' In ex-
plicit matrix form, Eq. (10) is written as

d V/d8 =M(9)V(9).

To simplify the notation, we have dropped the
common index ~. From the ~ dependence of Eq.
(11), we can see that the matrix M is of the form

M(9) =U (9)KU(9),

where U is a unitary matrix of the form U(9)
=exp(iH8), with H a constant diagonal (Hermitian)
matrix w'hose elements are given by H „=2m~ „.'
Moreover, & is a constant, real symmetric ma-
trix with elements

K, ,' =G,Q, ,'() ).

The parameter p, introduced here, is defined by

y. =k/(k +k, ) =a,/(x, + A.),
and measures the overlap of the gain and field in-
tensity distributions. It is limited to the range
0& p &1.

We now make a key substitution of variable for
& in Eqs. (4) and (7), namely, '

9 = tan- '(~/~, ),
to obtain

ls

y (9) = [exp(K+ iH)(9 —8,)]y (8,), (14)
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and the solution for t/ is

V(8) = U (9) exp[(K +iH) (9 —9,) ]U(8, )V(8,). (15)

For all cases we have considered, an explicit
solution for V(9) is available through diagonaliza-
tion, that is,

S '(K+ iH)S =D,

where D is a constant diagonal matrix of K+ iH,
and 8 is a constant nonsingular matrix whose
columns are the corresponding eigenvectors.

The eigenmodes of the electromagnetic system
with gain are found by choosing the vector V to be
such that the corresponding vector y is an eigen-
vector of the matrix &+ iH. The amplitude of an
eigenmode field &(r, 8) reproduces itself at differ-
ent values of the propagation variable ~ in pre-
cisely the same sense as do the free-space modes.
That is, it can be shown that the eigenmode field

For convenience, we introduce the vector y (9)
=U(9)V(9). After some algebraic manipulation,
Eq. (12) becomes 0.1

0 10

dy/d9= (K+ iH)y (8),

~,H independent of 6). The formal solution for y

Gp

FIG. 1. Normalized real parts of eigenvalues vs
plane-wave gain coefficient 0&, for p = 0.5.
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FIG. 2. Imaginary parts of eigenvalues vs plane-
wave gain coefficient, G&, for p, = 0.5.

amplitudes at two different values of ~ are identi-
cal complex functions of &/~ when the transverse
coordinate is measured along surfaces whose cur-
vature is equal to that of the free-space modes.
The two fields then differ only by a normalization
factor and the propagation factor exp[(A. +i)(9,
—8,)], where & is the corresponding complex ei-
genvalue. When the gain vanishes the eigenvalue
X equals 2Pi, and the free-space result is recov-
ered.

We have numerically evaluated the eigenvalues
and eigenvectors for the case p =0.5, as a func-
tion of &~, by truncation of the matrix &+iH to
forty rotationally symmetric (l =0) free-space
modes. It can be shown that the rotationally sym-
metric modes dominate all higher-order rotation-
al modes in growth rate. The value of the param-
eter p =0.5 corresponds to its upper limit for
Baman-Stokes emission and is approximately
representative of most uv and visible Baman las-
ers.

Figures 1 and 2 are plots of the real and imagi-
nary parts of the first three eigenvalues as a
function of the plane-wave gain C~. The real
parts can be identified as the growth rates of the
eigenmodes and have been plotted normalized to
the plane-wave gain. As can be seen in Fig. 1,
the first-eigenmode growth dominates that of the
others by at least a factor of 2 in the exponential
of Eq. (15). In fact, for values of &~- 10, corre-
sponding to superfluorescent single-pass Raman
lasers, the dominance is sufficient to make the
output field independent of the input distribution
and proportional only to the first-eigenmode field.
Figures 3 and 4 are plots of the eigenmode field
magnitudes and phase distributions as functions

FIG. 3. Magnitudes of eigenmode fields vs normal-
ized radial coordinate.
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FIG. 4. Eigenmode phase deviations from free-space
mode curvature vs normalized radial coordinate.

of the normalized radial coordinate, r/&u, for G~
=10. The phase plot of Fig. 4 represents the de-
viation from the free-space mode curvature. It
should be noted that the spatial profile of the
first-eigenmode field magnitude is approximately
a Gaussian distribution with a waist smaller than
the U, mode; this narrowing is qualitatively re-
lated to the phenomenon of gain focusing" that
occurs for parabolic gain distributions. "

In conclusion, we have presented an exact solu-
tion for wave propagation in the presence of
focused Gaussian gain. The solution is of practi-
cal utility for the rapid evaluation of a large class
of propagation problems that includes Baman,
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dye, and free- electron lasers. The same method
can be used to treat cases of focused-Gaussian-
refractive-index media and of partially filled
resonators. It can also be used when the gain or
index distribution is proportional to the magni-
tude squared of any single Gaussian-Laguerre
mode function. In future publications we will
present results for these cases and extend the
treatment to multiple-pass amplifiers. '
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Statistics of Millimeter-Wave Photons Emitted by a Rydberg-Atom Maser:
An Experimental Study of Fluctuations in Single-Mode Superradiance
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An experimental study of the fluctuations of a millimeter-wave transient Bydberg-atom
maser is presented. The photon-number probability distribution is shown to evolve in
time from a Bose-Einstein to a bell-shaped distribution. The experiment is a quantitative
check of single-mode superradiance theory.

PACS numbers: 42.52.+x, 07.62.+ s, 32.90.+ a

Rydberg atoms, excited by a laser pulse inside
a properly tuned millimeter-wave cavity, amplify
the radiation noise at the cavity resonant frequen-
cy and emit a transient maser pulse. ' By use of

a very sensitive detection technique based on
atomic field ionization, it is possible to actually
count the atoms which have radiated during a giv-
en time interval inside the cavity, which obvious-
ly amounts to counting the number of photons
emitted during that time. Such a photon-counting
type of experiment is quite novel in this part of
the radiation spectrum. It allows us to test under
almost ideal conditions the simplest model of
superradiance (the so-called single-mode" mod-
el'). In this Letter, we present an experimental
study of the pulse-to-pulse fluctuations of a Byd-
berg maser made of a few thousand radiators.
We have observed how the histogram of the num-
ber ~ of emitted photons qualitatively changes dur-
ing the emission time: Typical of a Bose-Ein-
stein field at the beginning of the process, it
evolves at later time into a broad beH. -shaped

curve presenting a maximum peak for a value n
+0. The measured histograms have been found to
be in very good agreement with the predictions
of the single-mode' superradiance theory. This
is to our knowledge the first direct and quantita-
tive test of the theory, in a system in which su-
perradiance is not complicated —as is the case
in the optical domain —by propagation or diffrac-
tion effects. '

The experimental setup is sketched in Fig.
l(a): A thermal beam of Na atoms is excited by
a dye-laser pulse (5 ns duration) to the 298»,
level inside a millimeter-wave semiconf ocal
Fabry-Perot cavity tuned to resonance with the
transition towards the less excited 2N y/2 level
(~ =162.4 GHz). The cavity has an intermirror
length L =1.2 cm and a Q =10000. It sustains a
mode with a Gaussian transverse profile (waist
wo =2.8 mm). The small atomic sample is located
at an antinode position in the mode standing-wave
pattern, so that all atoms are eq'uivalently coupled
to the field. Thy atoms interaction with the cavi-
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