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It is shown that inclusion of the D state of the alpha particle in the distorted-wave
amplitude for (a,d) reactions causes a strong J dependence. The S-D—state interference
is destructive for transitions with natural-parity J transfers and constructive for un-
natural-parity J values, thus causing, for example, an odd-even staggering in the vari-
ation with J of the cross sections for exciting the states of a given multiplet. This
provides a possible explanation for recent observations on the reaction 2%Pb(a,d)?!"Bi.
A similar J dependence is predicted for (°Li,a) reactions.

PACS numbers: 25.60.Fb, 24.50.+g

One motivation of a recent study* of the reac-
tion 2°°Pb(a ,d)*'°Bi was to see whether the theory
of (@,d) reactions could be calibrated by consider-
ing a case where the wave functions of the target
and residual nucleus were well known and simple.
However, the observed''? cross sections to the
(hg/284/5) multiplet exhibited a strong odd-even de-
pendence on J, the angular momentum transfer,
which was not reproduced by a one-step distorted-
wave Born-approximation (DWBA) calculation.
The observations were explained? by allowing
the coherent addition to the one-step transfer am-
plitude of the sequential (o,f;t,d) and (o,3He;
%He,d) amplitudes. According to Daehnick etal. b2
the interference between the one-step and two-
step amplitudes was destructive for natural-pari-
ty values of J, constructive for unnatural-parity
values. However, this has been questioned by
Pinkston and Satchler® who showed on general
grounds that the two amplitudes should have very
similar structure and that, in particular, no rela-
tive phase emerged that was J dependent. Thus,

a different source of the experimentally observed
J dependence of the transfer cross sections has
to be sought.

Recently, Santos efal.* presented evidence for
the importance of the D state of the @ particle in
determining tensor analyzing powers in (d,®) re-
actions. The asymptotic D- to S-state ratio need—|

ed to explain the measurements was consistent
with the predictions of the model of Jackson and
Riska’® for the o particle and corresponds to a
value of the usual D -state parameter of D,~ —0.20
fm?. This is similar in magnitude to that ob-
served for (d,f) and (@,°He) reactions, but in
these reactions the S- and D -state contributions
to the cross section are incoherent, in the ab-
sence of spin-dependent distorted waves, because
they correspond to different spin transfers of %
and %. In contrast, the S- and D -state ampli-
tudes in (@,d) reactions both correspond to spin-
1 transfer and are coherent. Consequently, inter-
ference effects may be manifested in the differ-
ential cross sections. We now show that these ef-
fects are J dependent.

The one-step DWBA amplitude® for the reaction
A(a,d)B depends upon the internal structure of
the o particle through the potential overlap

U@) =(¢1md'(zl)(p1md(gz), V‘PQ(ELEZ,P)), (1)

where the ¢,, are the normalized internal wave
functions of the emitted deuteron and the trans-
ferred (1 +p) pair, the Z’s represent their inter-
nal coordinates, and ¢, is the normalized a-
particle wave function. Also, V represents the
interaction between the two “deuterons” and 0 is
the separation of their centers of mass. From
general considerations of parity and angular mo-
menta, U() can be expanded as

UG)= 33 8D LM | L= m ) U ()Y (B), @)

with L’ =0 and 2. The U,(p) and U,(p) arise from the S and D states of relative motion of the two deu-
terons in the a particle. The structure of the target and residual nucleus appears through the overlap

Wrping > V1 gt 4Prmg?) =§ @ Ul )T IM MM ) LIMm ' | IM )R, (R)Y L (R)*, (3)

where R is the vector between the centers of mass of the captured “deuteron” and the target nucleus.
When the target has closed shells, the reaction feeds those residual states that are two-particle states
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coupled to the spin-0 closed-shell core. Then the spectroscopic amplitude ay ;(I5l,) is proportional to
an LS-jj transformation coefficient ((, £)j,(, $Vn;J| (1) L(%3)S;J), where (I,,j,) and (,,j,) are the
quantum numbers of the captured proton and neutron. The DWBA amplitudes,® for a given orbital an-
gular momentum transfer / and a total angular momentum transfer J and corresponding to the S and D

state (L’ =0 and 2) terms in Eq. (2), are

By, (L =0) =0, 12721 +1)]7 72 [ x, O R )*R, R)Y " (R)*U )X of ) R)AR o d%

and

B, ™(L" =2) =§auw<1zJL;1z>f Xa )RRy R, 0N L R) XY 00 ™o (R )R,

where ﬁa is the separation of the centers of mass
of the o particle and the target nucleus, while R
=Ro- 47 and R, =[4/(4 + 2)[Ra + (4 +2)/(4 + 4)I5.
Also, the x; are the usual distorted waves.

If one considers a reaction where the energy of
the a particle is not too far above the Coulomb
barrier, one may invoke a no-recoil approxima-
tion” ® by putting R, ~R’=[A /(A +2)]R,, in the dis-
torted wave x;. {The alternative approximation of
putting .ﬁ(ﬁ [@A +2)/A ]ﬁd in the other distorted
wave X« leads to somewhat smaller estimates of
the effect.} This allows the integration over b to
be done and one consequence is a parity selection
rule, L +1=even, for the L’ =2 amplitude which
may be embodied in the Clebsch-Gordan coeffi-
cient (L200|70). When the target has zero spin,
I1,=0, so thatJ =Iy, this and the selection rules
contained in the Racah coefficient result in / =L
=J for transitions to natural-parity states for
which (=) =(-)?, while for transitions to unnat-
ural-parity states we have L=J+1 andl=J, J
+lorl=L,L+2.

The D state will be most important when the
corresponding L’ =2 amplitude acts coherently
with that of the L’ =0, S-state amplitude so that
interference terms appear. Thus, the important
contribution to the cross section arises from / =L
for both natural- and unnatural-parity states.
Then an angular momentum coefficient

C,,=130(21 +1)1*2¢2200] 20) W (12J1; 11) (5)

may be factored from the D -state amplitude. This
has the values unity for I =J, — (J +2)/(2J +1) for
I=J+1, and —=(J - 1)/(2J + 1) for I =J — 1. This
change of sign between natural- and unnatural-
parity states means the S-D —state interference
will also change sign and determines the stagger-
ing of the cross sections for odd or evendJ. We
may also make the further approximation’ of re-
placing R;(R) by the asymptotic spherical Hankel
function %,V ikR), where « is the local wave num-
ber of the relative motion of the transferred “deu-
teron” and the target nucleus in the important re-
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(4a)
(4b)
’gion. Then we obtain the simple relation
B, ML =2)~ N, B, (L =0), (6)
where
’\lJszchlJ/zl/z- )

Here D, is defined by®
D,=(15)"1 ), p*U,l)Mp/ S, p?U,0)p. (8)

Since the reaction occurs mainly in the vicinity
of the distance of closest approach for grazing
collisions, the effective wave number x may be
estimated by adding the Coulomb potential at that
radius to the deuteron separation energy. Equa-
tions (6) and (7) predict that the contribution from
the D state of the (a,d) overlap is proportional to
that of the S state with a proportionality factor
X, that depends upon ! and J through Eq. (5).
Thus, the transfer cross section for a given !
and J will be given by

017=0,,(L" =0)(1 + Az )2 (9)

Daehnick et al.? present in their Fig. 1 values for
the one-step DWBA cross sections for the reac-
tion *®Pb(a,d)*°Bi exciting states of the (2/,£,,,)
multiplet, using the S state alone and with an
empirical normalization."! We have applied Eq.
(9) to these values, using D, =-0.20 fm?, and
estimating k2~ 2.0 fm™ 2 for an interaction radius
of 8 fm. Further, since the largest allowed !
transfer is usually dominant in (@,4) reactions,
we assume that / =L =J + 1 for the unnatural-
parity states. We then obtain the predictions
shown in Fig. 1 along with the measured cross
sections. The diminution of the cross sections of
odd-J states and the enhancement of those for
even-J states, especially for J =0, reproduces
the trend of the experimental results. While our
numerical estimates were based on several sim-
plifying assumptions such as the use of the no-
recoil approximation and the use of asymptotic
forms of the “deuteron” wave function in the re-
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FIG. 1. Integrated cross sections for exciting the
hg/989/, multiplet. Values joined by dashed lines are
the one-step results from Ref. 2 with only the S state,
while those joined by solid lines include the effect of
the D state by use of Eq. (9).

sidual nucleus, the main effect of the D state is
manifested through the Racah coefficient in Eq.
(5) which has opposite signs for I =J and I =J+ 1.
This will persist even in a full finite-range calcu-
lation. The magnitudes of the corrections pre-
dicted here may, however, change. Finite-range
calculations with S and D states are currently in
progress?’; preliminary results provide support
for our conclusions.

The J-dependent effects arising from the D
state should also be observed in reactions such as
“8Ca(a,d)°°Sc for the states of the configuration
(f1/2P3/2). Inthis reaction, the even-J states have
natural parity and should be suppressed while the
odd-J states should be enhanced. Further, these

J-dependent features should also appear in (°Li,
a) reactions close to the Coulomb barrier and in-
deed measurements of these would provide a way
to determine the sign and magnitude of the D-
state parameter D, for °Li.

Finally, we note that the calculations of Refs. 1
and 2 imply that contributions from the two-step
sequential transfers are not negligible. However,
extending the simple arguments of Ref. 2, one
may show that the effect of the D state on the two-
step amplitudes is similar to that discussed above
for the one-step, although the relative importance
of the S and D states will, in general, be differ-
ent. Consequently, the J dependence discussed
here will still be present when the two-step proc-
esses are included.
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