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Molecular-dynamics calculations for interacting waterlike particles are used to esti-
mate values of percolation exponents. Results are consistent with accepted values for
ordinary random-bond percolation for a three-dimensional lattice. Study of a correlat-
ed-site percolation problem, defined by the connectivity of those water molecules that
are four-coordinated, shows no evidence for different exponents. Thus there is no ob-
vious basis for the frequent criticisms against the application of lattice percolation
models to describe continuum coxxeLated systems such as polymer gels.

PACS numbers: 05.70.Fh, 64.60.-i

Are the critical properties of interacting three-
dimensional continuum systems the same as
those known for noninteracting models in which
the particles are constrained to the vertices of
a lattice? This question has arisen recently as
percolation is being used increasingly to describe
an ever wider range of natural phenomena —rang-
ing from gelation of polyfunctional monomers to
the hydrogen-bond network in liquid water. ' '
Unfortunately, all calculations of critical expo-
nents for three-dimensional systems have been
for random systems:here have been no calcu-
lations of the critical exponents for an interacting
continuum three-dimensional system. 4 Even the
simpler case of a continuum two-dimensional
system is just beginning to be studied with suffi-
cient accuracy that critical exponents can be
obtained. Liquid water is one of the most in-
tensely studied continuum systems for which
association of individual constituents plays an
important role. In this work we analyze a mol-
ecular dynamics simulation of a model of liquid
water to obtain exponents for a three-dimensional
continuum system whose elements are not ran-
dom.

The input to the present work is a computer
tape6 resulting from a molecular-dynamics simu-
lation of a system consisting of 216 particles
confined to a cubic box of edge 18.6 A with period-
ic boundary conditions (density 1 g/cm'); the
temperature of the system was 284 K. The par-
ticles interact through an ST2 effective pair po-
tential designed to reproduce a wide range of
properties of real water. Its most prominent

feature is a tetrahedral charge distribution
around the oxygen atom, with two positive par-
tial charges on the proton location and two nega-
tive partial charges representing the lone elec-
tron pairs. The absolute minimum of the ST2
potential is -6.84 kcal/mole.

The Stillinger-Rahman tape consists of a simu-
lation with 38100 time steps. After each 300
steps, we created a 216 x10 table containing for
each molecule i (i = 1, 2, . . . , 216) the ten other
molecules j that interact most strongly in an

attractive way with molecule i. We thereby ob-
tain a set of 127 (=38 100/300) different tables,
which are then used as input for the following
procedure to calculate the time-averaged cluster
size distributions.

We use two definitions of a hydrogen bond: Def-
inition D, defines hydrogen bonds by a purely,
energetic criterion. Specifically, molecules i
and j are considered to be "bonded" if their pair
interaction energy satifies V, , & VH&. The pa-
rameter V» is permitted to take on a sequence
of 32 discrete values V»=-20E, -22E, . . . , -82E,
where E = 0.075 75 kcal/mole. Clearly V H, =

-20E represents the most permissive definition
of a hydrogen bond, while V HB

= -82E is the least
permissive definition. In the case of permissive
definitions, there sometimes occur water mole-
cules having more than four bonds; in this case
we eliminate the weakest "extra" bonds in the
system until there are a maximum of four bonds
per molecule.

It may be argued that a purely energetic crite-
rion includes in the list of bonded partners pairs
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of molecules that have an interparticle separa-
tion that is too large for a hydrogen bond; more-
over the elimination of extra bonds introduces
some ambiguity. Therefore in definition D, we
add a geomeA ic cutoff and eliminate from the
list of strongly interacting partners of molecule
i all molecules j whose separation l v; —r, l ex-
ceeds 3.5 A, but we do not eliminate any extra
bonds. Also, to get better statistics, we gen-
erated 8OO tables by analyzing after every forty
time steps.

Thus, given a configuration of water molecules,
we get for each water molecule i a list of its
directly bonded partners j, k, . .. . These lists
allow us to construct "bond clusters" of mole-
cules such that stepping along successive hydro-
gen bonds keeps us confined to a given "bond
cluster. " An illustrative example is given in
Appendix A of Ref. 8. For each "snapshot" of
the system, we calculate 8'„ the number of
water molecules belonging to a bond cluster with
s molecules. Thus W, is the number of unbonded

molecules, W, the number of water molecules
belonging to two-molecule clusters, and so forth.
In the language of percolation theory this is the
bond percolation problem with site counting;
note that exact enumeration procedures for bond
percolation usually employ bond counting. '

If we reexamine the same configurations but
now eliminate all molecules with less than four
intact bonds, we obtain a correlated-site percola-
tion problem"'" that is believed to have the same
exponents as random percolation. "'" The num-
ber of molecules belonging to a cluster of s "four-
bonded" molecules is denoted W, *. Molecules
with more than four bonds (using definition D, )

are added to the class of four-bonded molecules
in the following.

In order that systems with differing numbers of
particles can easily be compared, it is convenient
to normalize the cluster distribution by N (= 216),
the total number of particles. Thus zv, (VHB)
=N 'W, (VHB) is the fraction of water molecules
belonging to a bond cluster of s molecules, with

an analogous definition for w, *. For each value
of V», we also calculate the total number of
hydrogen bonds in the entire system, N». Again
we normalize by the total number of particles,
so that n H~(VH~) = 2N 'N„B(VHB) is the mean num-

ber of hydrogen bonds per molecule. For the 32
values of V» given above, n» takes on a corre-
sponding set of 32 values ranging from 0.08 to
3.59 for D, and from 0.08 to 4.06 for D,. Since
there is a 1:1relation between VH& and n», it
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FlG. 1. Mean cluster size ~ for bond networks de-
termined by bond definitions D~ (squares) and D2 (cros-
ses). Also shown are the corresponding quantities for
Dj (circles) and D2 (triangles) for clusters of four-
bonded water molecules. The straight line shown is
drawn through the steepest part of the curve, since
there is rounding for small values of & and crossover
to mean-field value &=1 for large values of &.

is convenient to think of the weight fractions u,
as functions of n».

For each value of VH~, we have calculated the
cluster distributions , and m, * and obtained the
following additional averaged" quantities:

(i) Mean cluster size. The mean cluster size
of the finite networks, S, is conventionally de.-
fined as the average of s with respect to the dis-
tribution function m„S =Q'sm, ~'w, . The
primes indicate that the spanning networks are
omitted from the sums, i.e., clusters that cross
the entire box in at least one coordinate direction
are eliminated. Defining & —= (P, —P)/P„with P
=—nHH/4, we expectS-C& ~. Figure 1 shows
double logarithmic plots of S and S* (the asterisk,
throughout, denotes the continuum correlated- site
problem defined by the four-bonded molecules).
The straight lines have slope 1.7, and are seen
to fit the data which are close to the percolation
threshold, but not so close that rounding effects
arise as a result of the finite system size. Thus
we find that y and y* are consistent with the lat-
tice estimates y =1.73+ 0.3.' We also find values
of P, consistent with the ice lattice values f,
=0.388,'" and P,*=0.795." This fact is some-
what surprising, since one might expect expo-
nents to be universal but not necessarily the val-
ue of the threshold parameter P, .

(ii) Order parameter. For finite systems, the
fraction of molecules belonging to spanning clus-
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FIG. 2. Order parameter P for clusters of four-
bonded @rater molecules with use of both bond defini-
tions D, (circles) and D~ (triangles).

ters is regarded as the order parameter, de-
noted P . As the system size becomes infinite,
we expect that & =&&, thereby defining the ex-
ponent P and the amplitude &. For lattice perco-
lation, p =0.42+ 0.06,"while from analysis of our
correlated-site percolation data (Fig. 2) we find
p =p* =0.38+ 0.05. The amplitude B differs by 8'
for the two bond definitions.

(iii) Characteristic length. The length L, of an
s-molecule cluster is defined as the difference
between the maximum and minimum oxygen co-
ordinates of the cluster (with respect to some
chosen coordinate direction). To get better sta-
tistics, all three Cartesian coordinate directions
have been used successively. Since the length of
a one-molecule cluster is zero, only clusters
with s & 1 have been treated. Also, only nonspan-
ning clusters are considered. Figure 3 is a dou-
ble-logarthmic plot showing the dependence of
the averages over all clusters L and I-* on &;
the slope is 0.75+ 0.1, consistent with literature
estimates of the exponent v in 1,-4& ' for lat-
tice percolation. "'"" Unlike most calculations,
we can also obtain the amplitudes. , with the re-
sultsA =1.0 A andA*=1. 5A.

(iv) Weight fraction cu, of clusters of size s. At

P, the weight fraction of clusters of size s is ex-
pected to decrease with s as m, - s ' ', where
v = 2 +1/o; 5 = 5.0 + 0.1 for lattice percolation. "
Figure 4 shows , and i+,~ averaged over those
values of Po closest to the threshold. The straight
line has slope 1.2 and is seen to pass through
even the data point for s =2. Actually the data set
of M', for nH& =1.55, being very close to the

threshold nH g', showed rather large fluctuations
as expected from lattice calculations. "

In summary, we have estimated the exponents
P, y, v, and T =2+1/& for a continuum interacting
system in three dimensions. Our estimates for
all four exponents are consistent with the esti-
mates for a lattice system. Thus there is no ob-
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FIG. 4. Weight fraction of molecules belonging to
clusters of size s determined by definition Dq for both
bond networks (crosses) and four-bonded water mole-
cules (triangles) . The straight lines have slope 1.2,
since T —1=1+&
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FIG. 3. Average length L determined by definition D~
for both bond networks (squares) and clusters of four-
bonded water molecules (circles) . The normalization
factor 2.82 A is roughly the length of a typical hydrogen
bond.
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vious reason to doubt the application of random,
lattice percolation to describe the connectivity
properties of interacting, continuum systems
such as polymer gels and water. ' '
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