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It is shown that for systems developing stationary periodic patterns there exists at
most one stable wavelength state if a supercritical region is connected to a subcritical
one by the imposition of a slow spatial variation of the external parameters. In nonpo-
tential systems the selected wavelength depends on the particular combination of param-
eters that vary but not on the (slow) rate of spatial variation. Suitable parameter vari-
ations force the system into a dynamic state.

PACS numbers: 05.70.Ln, 02.30.+g, 47.20.+m

During recent years there has been considerable
interest in dissipative systems which develop
periodic spatial structures. Such patterns have
been observed among others in hydrodynamic in-
stabilities of fluids, ' ' crystal growth, ' electro-
hydrodynamic instabilities of nematic liquid
crystals, ' and chemical-reaction-diffusion sys-
tems with autocatalytic elements. "

An open question is what determines the period
in such systems and under what circumstances
there exists a mechanism that brings the system
into a definite wavelength state independent of
initial conditions. In Taylor vortex flow a broad
range of wavelength states can be obtained by ap-

propriate experimental techniques. ' In axisym-
metric Bernard convection' and in directional
solidification, 4 on the other hand, there appears
to occur a definite wavelength for given external
conditions.

Theoretical models for such systems exhibit a
continuous family of linearly stable nonequivalent
wavelength states and this property can be under-
stood from translational and rotational symmetry.
If the equations can be derived from a minimizing
principle the condition of stationarity with re-
spect to wavelength gives a selection criterion.
This criterion is of little use since most pattern-
forming systems do not have a generalized free
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8) u~ = D~ s„u~ +a~u~(1 —ug ) —b~u2 ~

&, u, =D, &„'u, —a,u,(1-u,')+b,u, . (2)

It has a soft-mode instability at finite k =2m/a
(A. =wavelength) typical for many models. The in-
stability occurs at k'=(a, D, —a,D,)/2D, D, when
b,b, becomes smaller than (a,D, +a,D,)'/4D, D,
while the inequalities 1 &a,/a, & D,/D, hold. Be-
yond the instability Eqs. (2) have a continuous
family of linearly stable periodic states.

We now suppose that the functions f, vary on a
slow scaleX =m, with ~«1, and look for a solu-
tion based on an expansion in e. This sort of
problem may be treated by the WEB-like approach
for nonlinear equations i5, i6 Thus we seek a solu-
tion of the form

u,. = &u'&(q, X) + eu,.&'&(q, X) +. . . (3)

with &„q=0(1) and u, ' periodic in 7i with period
2~. Under the assumption that ~„g varies slowly

energy.
Work directed towards an understanding of the

wavelength selection process" "has dealt for
the most part with Bernard convection and the
Taylor system in simple fluids. The treatment
of Cross et al. and others""'" has clarified that
nonperiodic boundary conditions can influence
the band of allowed wave vectors but they do not,
in general, select a unique wavelength. An im-
portant step was made by Pomeau and Manne-
ville, "who introduced the concept of a small
curvature into quasi-infinite systems to single
out a specific wavelength state which remains a
stationary solution in axisymmetric situations.
This selection criterion coincides with free-en-
ergy minimization where the latter is applicable.

We here analyze wavelength selection for sys-
tems with periodicity in one dimension and slow-
ly varying external parameters. Of special inter-
est are such spatial variations ("ramps'*) which
connect a homogeneous supercritical region to a
subcritical region. Such ramps lead to a unique
final state and therefore act as selecting bounda. -
ries. The'results are confirmed by numerical
simulation of simple model equations which do
not have a potential.

The analysis is demonstrated most easily for a
set of simple reaction-diffusion equations,

&, u, =D;, V'u, +f. , (u„.. . , u„),
i=1, . . . , n (sum over repeated indices is always
implied). As a simple example in one spatial di-
mension consider

in space it is useful to introduce a slowly varying
phase 0 by

where T= e't will turn out to be the appropriate
slow time scale. Then

defines the local wave number k. With use of

B„=gPBq+ e B~

equations may be developed at each order in ~.
At order e' the equations define periodic solu-

tions which are the equilibrium solutions u,. '
for the local values of f;, with wave number k
undetermined at this order. The required result
is obtained at order ~'. We find

V,. &r O=D, , [(8»k) +2k &»] V, +L, , u, ~'~,

where V;= e„u; ' was introduced. The linear
operator

k (j +ef /Qu ~

is singular since the translation mode V; satis-
fies I-„V,.= 0. One then obtains

&r8 = ( &» k) ( V; tD, , V, ) + 2k ( V, ~D, , 8» V,. ) (8)

as a solubility condition, where V; is the period-
ic zero-eigenvalue left-eigenfunction of I-. and'2' sj
( ~ ~ ~ ) = dg. The normalization of V; is
chosen such that ( V,. ~ V,. )= 1.

The total dependence of u,-i" (and therefore V, )
on X may be divided into a dependence on k(X)
and an explicit dependence on the spatially vary-
ing parameters of f; which we will call n, (X).
Thus (8) can also be written in the form

&~ 0=(&»k)(V, ~D;, (1+2k 8~) V, )

+ 2k( &» n, ) ( V; tD;, &„,V, ) . (9)

The integrals in (9) are functions of k and n„
determined through the zero-order problem.
Since k = &»8, Eq. (9) constitutes a phase diffu-
sion equation"" with drift from the inhomogenei-
ties.

We now focus attention on static situations
where the right-hand side of (9) must vanish.
This constitutes a first-order differential equa-
tion for k(X) and thus determines the local wave
number if it is prescribed at one point. Specif-
ically, if the variation of the parameters o., is
such that the system becomes (slowly) subcritical
on one side then the wave number is determined
everywhere because it is unique in the threshold
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region. "
In general the wave number selected by such a

ramp is not a unique function of the local param-
eters n, but depends on the full shape of the ramp.
It is, however, clear that all ramps that canbe
transformed into each other by a (linear or non-
linear) transformation of the spatial variable
lead to the same k(o. , ) (in the slow-variation
limit). Therefore, if only one parameter (or pa-
rameter combination) is varied, the selected
wavelength is uniquely def ined.

Equation (9) also determines stability of static
solutions with respect to long-wavelength fluctua-
tions. In a homogeneous region the quantity
(V, tD, , (1+2k) V,.), which corresponds to the
longitudinal phase diffusion constant, must be
positive. The limits of this criterion give the
Eckhaus instability. "

We now turn to the example (2) where one may
choose V, ~ = -b, V„V,~= b, V, (up to normaliza-
tion) and consider the situation where only the
parameters b, and b, depend on X. Then the
static version of (8) reduces to

D, b {X)s [k(V, )]—D b, (X) 8 [k(V )]=0.
(10)

Specifically one may consider situations where
b, /b, is independent of X. Then (10) goes over
into

k [D,(b,/b, ) ( V,') —D, ( V,') ] = const .
Matching to a subcritical region (where V;-0)
leads to the requirement that the constant in Eq.
(11) is zero. This condition determines uniquely
the wave number as a function of b, and b,. Curve
2 of Fig. I shows this wavelength as a function of
b = b, = b, for D, =I, D, =4, a, = 1, and a, = 1.2
whereas curve 1 exhibits the Eckhaus stability
limits.

To test these results numerical simulations of
Eqs. (2) were performed. An implicit discret-
ization scheme was used to integrate (2) on a
strip of length I- with various boundary and ini-
tial conditions. Boundary conditions that are
consistent with periodicity led in the homogeneous
ease for t- ~ to stationary periodic states in the
Eckhaus-stable region. Some types of nonperiod-
ic boundary conditions reduced the accessible
range but still left a band of states in agreement
with previous results. """

The picture changed drastically when a slow
monotonous spatial variation on b, and/or b,
was imposed so that the system became sub-

1.0

1.2-

10 ~ 15 20

FIG. 1. Curve 1: Linear stabi1ity limits for periodic
solutions with wavelength & for D&/D&= 4, a& = 1, a~
= 1.2 as a function of b = b

&
= b ~. Curve 2: Wavelength

selected by a slow ramp with b &
= bz = b. The bars give

the approximate width of the remaining band for a
steep ramp with dbfdx = 0.015 (~»er bars) and a step
cha~~e in b to 1.5 (outer bars). Curve 3: Selected
wavelength for ramps with b

&
= b = const and b2 in-

creasing from b to a subcritical value. Curve 4: b&

and b 2 interch~~ged.

critical before the boundary was reached. To
determine the wavelength with sufficient preci-
sion we kept a homogeneous region adjacent to
the ramp. Under such conditions a unique final
state was reached independent of the initial con-
ditions. When b, was chosen equal to b, (= b)
everywhere (including the ramp region) the final
wavelength fell onto curve 2 in agreement with
the theory Asele.ction within an accuracy of I /z

was found when b changed from its bulk value to
threshold over a length of at least about four
wavelengths. The remaining bandwidth for a
steeper ramp and step is indicated in Fig. 1.

When a ramp with b, gb, was constructed then
the final state was still unique but the wavelength
differed from the one found above in agreement
with the theory. In curve 3 of Fig. 1 the final
wavelength is plotted for a ramp where by b ls
kept constant while b, increases from b (in the
homogeneous part) to a subcritical value. Curve
4 shows the selected wavelength for the case
where b, and b, are interchanged. "

We believe that the concept introduced here is
applicable quite generally and propose an ex-
perimental test by constructing a selecting
boundary in a way analogous to what we did for
the numerical simulation. In the Taylor system
one can decrease the gap by making one of the
cylinders conical at one end. " For Bernard con-
vection this could involve reducing the heating
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gradually at one end of a long rectangular cell or
decreasing the height of the fluid layer. " The
two types of ramps may well select (slightly)
different wavelengths. An elegant way to observe
this effect would be to have different types of
ramps on the two ends. A dynamic situation
presumably would then develop where the pattern
moves steadily from one side to the other.

We point out that in potential systems, i.e. ,
systems where the right-hand side of Eqs. (1)
with the spatial variations included can be ob-
tained as variational equations of a minimizing
functional, all ramps select the minimizing wave-
length.

It is in principle straightforward to generalize
the analysis presented here to other types of
models. It appears especially interesting to con-
sider higher-dimensional patterns with ramp-
type boundaries.
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