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A breather soliton of the sine-Gordon equation is shown to behave stochastically in
the presence of an external oscillating field, which leads to random pair creations of
kink and antikink solitons.
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H= —,
' f dx[u, '+u„'+2(1-cosu)] ffudx, -(2)

while the total momentum of the field P =- —Ju„u,

Recently there has been a surge of interest in
statistics of solitons in various physical fields. "
Since nonlinear wave equations governing solitons
are completely integrable, there must be some
mechanisms which enable us to consider a statis-
tical ensemble of solitons. For nontopological
solitons the thermal mechanism may be natural
since its activation energy can be very small.
But for phase solitons such as kinks of the sine-
Gordon (SG) equation, which have a finite creation
energy, nonthermal excitation mechanisms will
play an important role, especially in nonequilib-
rium systems. In this Letter, I show that kink
solitons of the SG equation can be randomly
created through the stochastic instability of
breathers in the presence of an oscillating exter-
nal field. This system is the model of many
physically interesting phenomena such as charge-
density waves in a one-dimensional condensate
in the presence of an ac electric field, ' the mag-
netic-flux propagation on a Josephson-junction
transmission line with an ac external current, '
and the creation of baryons from a meson through
the interaction with an external oscillating field. '

The interaction between SG solitons and an exter-
nal field is described by

u« —u„„+sinu = e cosset -=f(t),

where e is a small parameter and f(t) is an ex-
ternal field. The Hamiltonian of Eq. (1) is

x& is still conserved when u(~, t)-u(-~, t) =0
which is satisfied for a breather and a kink-anti-
kink pair. Therefore we can choose a reference
frame such that the center of mass of a breather
(or a kink-antikink pair) is at rest even in the
presence of the external field. This is equivalent
to eliminating one degree of freedom of a breath-
er and enables us to perform a simple perturba-
tional approach.

If &=0, Eq. (1) is completely integrable in
terms of canonical variables which consist of
the scattering data of the associated linear eigen-
value equation, ' and it has the following soliton
solution:

u=4arctan[T(t)sech2k(x -x,)],
where x, is constant and T(t) = sin(n/16) tan8, k
=-,'sin8 for a breather and T(t) =(e~+e ~) sinh(q /
16)/(e~-e ~), k =e~+e ~ for a kink-antikink pair.
Here (0, n) and (p, q) are the canonical conjugate
variables which are given by

8(t) = e(0), p(t) =p(0),

n(t) =16tcosH+n(0), q32( ~e-e ~)t+q(0),

where the unperturbed Hamiltonian is given by
H, = 16sin8 or H, = 32(e~+e ~). Since the long-
time behavior of 0, p is of interest in the presence
of the external oscillating field, the averaging
method for Hamiltonian systems can be applied.
Substituting Eq. {3) into Eq. {2), we have the ap-
proximate Hamiltonian

H =H, + (2~f/ )lkn[-T + (1 + T') ' '],
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and the canonical equations yield

f(1 ~2)3/2( 1 + ~2 v2/4) 1j2
t '2 (1 + v2/4)1/2 (5)

2(1+ ' '/4)'t' vf v

(1 2)1/2 4(1 2) 2 4 t (6)

where v = -2T, p,
' = -cot'0 &0 for a breather, and

p, '= (e~-e ~)'/(e +e ~)'&0 for a kink-antikink pair.
Equations (5) and (6) can also be derived by the
perturbation method of Kaup and Newell. '

In order to express the oscillating character of
a breather explicitly, we transform Eq. (6) to

H, &fsing
16 cot0 64 sin0 cos'0(1+ T')' '

where g = -a/16 and H, is the perturbed Hamil-
tonian given in Eq. (4). Thus, a breather is an
oscillating bound state of a kink-antikink pair,
whose frequencies consist of a fundamental en-
ergy-dependent frequency -cos6 and its odd high-
er harmonies -(2n+1)cos0. The external oscillat-
ing field interacts with a breather resonantly at
each harmonic and the overlapping of these reso-

!

nances leads to the chaotic behavior of a breath-

!er.
I et us derive the approximate criterion for the

overlapping of resonances' by means of the Hamil-
tonian (4), which turns out to be

oo

H =16sin0+, , Q b,„„sin(2n+1)g,sin9cos(et)

where p~-tcos0 and (b,„„jare the Fourier-sine
coefficients of ln[tan0sing+(1+tan'0sin'P)' ']. lf
!tan0! «1, that is, the energy of a breather
(16sin0) is small, the Hamiltonian is reduced to

H ~160+4ve eos(~t)sinII,

which gives a single resonance at ~ ~cosH ~ 1.
This case was discussed by Kaup and Newell in
connection with a charge-density wave in a one-
dimensional condensate. ' For a high-energy
breather such that ! tan8sing!»1 is satisfied,
we have

H~1 Gsi n0— . . [In(tan0) + Q m 'cos(2m/)],4~& cos(&ut) Isin& I

sin sin9

v/2 & 0 & v/2 —(v e w/2) '~', (8)

where 0 = v/2 is the boundary between a breather
and a kink-antikink pair. From Eq. (8) it is found
that the amount of energy gain through this sto-
chastic process is roughly of the order e' ' which
is larger than that due to a single resonance
(e' '). lt is also expected that a breather in the
stochastic region gains energy stochastically and

1884

where ln(tan0) and m ' correspond to -b, and
-5, „, respectively. When ~ is small enough,
the trajectories in the phase space (0, g) consist
of many separated resonance islands, corre-
sponding to each resonance ~ =(2n+1)cos0. Since

!cos0!«1 in this case, the resonances occur at
large n (or m). The width of each resonance is-
land can be estimated as 60 = (we/m)'~' whereas
the distance between neighboring islands is given
by 60 ~&a/2m'. The overlapping condition of
neighboring islands, that is, 50 /60 &1, yields

m &((u/2)'~'(me) ~',

which gives the stochastic region in the phase
space:

splits into a kink-antikink pair randomly. This
is confirmed by numerical integrations of Eqs.
(5) and (6) and a typical numerical result is
shown in Fig. 1. In this example, 31 points out
of 54 fall into the kink-antikink region ( p. & 0)
from the breather region ( p,

' &0) through "holes"
(p.'=0, (=O, v, 2~) in the phase space. These
holes are on the path through which a breather
solution is analytically continued to a kink-anti-
kink solution and Fig. 1 shows relatively regular
trajectories near the holes. However, a kink-
antikink pair is chaotically created in the sense
that the variable T(t) or v(t) governing actual
behaviors of a kink-antikink pair is not deter-
mined regularly at the holes [see Eq. (7) and the
definition of T). After a kink and an antikink are
created by such a random pair production, they
behave coherently like relativistic particles
changing their momentum and energy periodical-
ly as a result of the external field. In other
words, kinks are created in the rarefied gas of

randomized breathers as coherent structures.
This mechanism of chaotic creation of a kink-
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cies are greater than 1. Although small nonsoli-
ton fields are excited locally near a breather
through resonances between oscillations of non-
soliton fields and the coupled oscillation of a
breather and the external field, their contribu-
tion to the perturbed Hamiitonian ffu„, dx is
smaller than f fu, dx, where u„, and u, are the
nonsoliton and solition fields, respectively. Fi-
nally, it is noted that a low-energy breather also
becomes stochastic if the external field consists
of many different frequency components instead
of a single one, which will be discussed else-
where.

I am grateful to Professor T. Taniuti for help-
ful discussions and thank N. Bekki for his assis-
tance with the numerical calculations.
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FIG. 1. Trajectories of phase points resulting from
54 initial values on the line p,

2= -0.0335, which is close
to the resonance, n = 3, for e= 0.01 and&v=0. 9. Points
are plotted at time intervals 27t/~ until t =240& 27t/co.
The width of the stochastic region is estimated from
Eq. (8), which gives 0&p2-& —0.06. This estimation
reasonably explains the numerical result except in the
narrow core region of the resonance, n = 3.

antikink pair provides the theoretical interpreta-
tion of the recent numerical investigation. '

In the above discussion, the effects of excita-
tion of a nonsoliton field are neglected, which is
justified for the case ~ &1. In this case the non-
local excitation of nonsoliton fields by the direct
resonance does not occur because their frequen-

'J. D. Meiss and W. Horton, Jr. , Phys. Rev. Lett.
48, 1362 (1982).

2J. F. Currie, J. A. Krumhansl, A. R. Bishop, and
S. E. Trullinger, Phys. Rev. B 22, 477 (1980).

3M. J. Rice, A. R. Bishop, J. A. Krumhansl, and
S. E. Trullinger, Phys. Rev. Lett. 36, 432 (1976).

4B. D. Josephson, Adv. Phys. 14, 419 (1965).
5J. K. Perring and T. H. B. Skyrme, Nucl. l?hys. 31,

550 (1962).
6L. A. Takhtadzhyan and L. D. Fadeev, Theor. Math.

Phys. (USSR) 21, 160 (1974).
D. J. Kaup and A. C. Newell, Proc. Roy. Soc. Lon-

don, Ser. A 361, 413 (1978).
G. M. Zaslavsky and B. V. Chirikov, Usp. Fiz. Nauk

105, 3 (1971) [Sov. Phys. Usp. 14, 549 (1972)l.
D. J. Kaup and A. C. Newell, Phys. Rev. B 18, 5162

(1978) .
' J. C. Eilbeck, P. S. Lomdahl, and A. C. Newell,

Phys. Lett. 87A, 1 (1981).

Necessary Conditions on Potential Functions for Nonrelativistic Bound States

Gerald Rosen
Department of Physics, Drexel University, PhiladelPhia, Pennsylvania 19l04

(Received 15 November 1982)

it is shown that IIV(x) l~ ~ d3x & (n 2/4) (3h 2/2m) 3/2 is a necessary condition for one or
more normalizable bound-state solutions to the nonrelativistic Schrodinger energy-
eigenvalue equation for any potential function p(x) such that the integral is finite. More-
over, for potentials such that f I V(i) l~~/~d3x is finite for a value or values of y & 1, the
magnitude of a negative energy eigenvalue is related to the latter integral by a general
inequality derived here.
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Veling has recently reported an important result for the nonrelativistic one-dimensional Schrodinger
energy-eigenvalue equation with a potential function such that J „ i V(x) i

rdx is finite for some constant
parameter value(s) y -'i: Negative energy eigenvalues associated with normalizable bound states are
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