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Stochastlclty Threshold for Hamlltonians with Zero or One primary Resonance

J. P. Codaccsons
Laboratoire de Physique APpliquee, Institut Universitaire de Recherche Scientifique, F-64000 Pau, France

and

F. Doveil and D. F. Escande
Laboratoire de Physique des Milieu@ Ionises, Ecole Polytechnique, F-91128 Palaiseau, Finance

{Received 1 November 1982)

The large-scale stochasticity threshold for Hamiltonians with two degrees of freedom
with only one primary resonance can be analytically estimated because of the quite
steep growth of the stochastic layer of this resonance. For Hamiltonians without pri-
mary resonance, the threshold is computed by available techniques after canonical
transformations. Thus the first analytical estimate of the threshold is obtained for the
Henon-Heiles Hamiltonian and an example of Walker and Ford.

PACS numbers: 05.40.+j, 03.20.+i

The aim of this Letter is to fill. a gap in the
available methods for computing large-scale sto-
chasticity (LSS) thresholds in Hamiltonian sys-
tems with two degrees of freedom. These thresh-
olds are all-important quantities in various prob-
lems (see for instance Chirikov' and references
therein). In many cases the Hamiltonian can be
written as

H(I, O) =H, (I)+e g V„(I)cos(n 6+X„),

where 8 is some set of coupl. es of integers, X„ is
a phase, and I = (I»I,) and 8 = (6„0,) are the ac-
tion-angle variables of II,. Generically, for c ~ 0
IJ is no l.onger integrable. Then regions of chaotic
motion" appear in phase space and their size in-
creases with &. Merging of such regions can l.ead
to the appearance of LSS." Time-dependent
Hamiltonians with one degree of freedom can
easily be written' in the form of Eq. (1).

The term with index n of Eq. (1) is said to be

resonant" for a given value of the energy E if
there is an action value I„=(I„,I„), such that En~~ rf2 ~

=Ha(I „)and

n (u(I„)=0, (2)

with &u =BH,/BI. This means that n is tangent to
the unperturbed energy curve at I„[see Fig. 1(a)]
and that, for small values of &, the phase n 0 is
stationary since d9/dt=&H/&I. Then H is said to
have the primary resonance n.

Here we consider the case where & has fewer
than two primary resonances. When II has no
resonance we show that canonical transformations
always allow us to get a new Hamiltonian B', with
at least one primary resonance. For the case
when B' has at least two primary resonances,
there already exist methods to compute the thresh-
old of LSS.' ' When 8 or 8' has only one primary
resonance, LSS corresponds' to the sudden blow-

up of the stochastic layer' of this resonance. The
anal. ytical description of this blowup" gives a
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(3)

method for computing the threshold of LSS. We illustrate the method by applying it to the Hamiltonian

H„(I,0) =H, (I )+ 0.95I,I, cos(2&, —26,)+ 0.25I,'i'I, cos(36, —20,),

= (x,'+x,'+ y, '+ y, ')/2+ x,'x, +x,'/3. (4)

is the Henon-Heiles Hamiltonian' and k' is an
integrable Hamiltonian. ' Figure 7 of Ref. 6 shows

where

Ho(I) =I, +I2- I, —3I,I2+I22,

introduced by Walker and Ford. In this case, e
= 1 but the amplitude of cosine terms is governed
by the total energy E. The (2, —2) resonance al-
ways exists but the (3, —2 ) one appears for E
= 0.08. At that value, the Poincarb map of the
system exhibits an appreciable chaotic domain
in the neighborhood of the (2, -2) resonance. All

the various methods based on the existence of
the two primary resonances would predict a
threshold larger than E . Our method, which

applies to the case of only one resonance, here
labeled by (2, -2), yields a threshold E ' =0.0't 8

consistent with the numerical results. We also
consider the Hamiltonians

(xgSxg jylt y2 )

i the rapid increase of the area of the chaotic re-
gion in Poincard maps of h when the energy E
increases and it yields a numerical threshold
E„=0.11. We compute here the first theoretical
estimates of this threshold by two different ways
which use the methods of, this Letter and, respec-
tively, yield E, = 0.08 (which agrees within 27'%%uo

with E„)and E, =0.106 (which agrees within
4'%%uo with E„). Hamiltonian h' has an energy of
escape E,'=~ above which the equipotential lines
open and phase space is no longer bounded. For-
getting that h' is integrable, we perform the
same two calculations for h'. We get E,'=0.115
and E,"=0.15 which are both above E,'. Since
LSS is defined' for bounded phase spaces, this
result is a hint of the integrability of h+. We
now describe our general methodology before
applying it to H and h'.

We assume first that H has no Primary meso

nance [the case of Fig. 1(b), in which for clarity
S contains only two elements labeled m and n].
In order to generate terms corresponding to sec-
ondary resonances, we perform on H a Kolmo-
gorov transformation" which kills all the cosine
terms of Ecl. (1) to order e. This transformation
goes from the (I, 8) to the (J,y) coordinates and

is defined by the generating function

JI=E

FIG. 1. Resonant directions and energy curve. (a)
Two primary resonances. (b) No primary resonance.
(c) Case (b) after one canonical transformation; the
old (new) energy curve is the dashed (continuous)
curve; the resonant m + n direction is now created.
(d) One unique primary resonance; new axes ( and g
are defined.

( -) - - g V„(J)sin(n + g„)
n. ~g)

The absence of primary resonance precludes any
problem of a small denominator. The new Hamil-
tonian H' contains terms of order &', i) 2. The
terms of order E' may be written in the form

F~W „(J)cos[(m+ n) p +X„+X„],
where m and n belong to 8. Those with m=n and
a minus sign enter into the angle-independent
part Ho of H' and modify the range of directions
of ~'= BH, '/BJ with respect to that of ~. The di-
rections of the set of vectors m & n cover a wider
range than those of $. This fact and possibly the
increased range of directions of co' make more
likely the existence of at least one primary reso-
nance for H' [see Fig. 1(c)]. Moreover, the 0(e')
terms also contribute to modify H, and to create
new possible resonant directions. Higher-order
terms cannot be retained after this first canoni-
cal transformation, since the actual amplitude
of the corresponding resonances is modified by
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the O(e') and O(e') terms. Therefore, if there is
no O(e') or O(~') primary resonance, the process
must be iterated by killing these terms by a new
Kolmogorov transformation. If iterations are
necessary for getting at least one resonant term,
this term may be of order between e" and E'

and higher-order terms must not be considered
for the same reason as previously. If only one
primary resonance appears after these iterations,
the method of the next paragraph must be used.
If more resonances are present, classical meth-
ods' may be applied. A concrete example
where II has no resonant term is given later with
the first treatment of h'.

We now assume that B has a unique resonant
term n = r. Then LSS appears as a result of the
blowup of the stochastic layer of resonance r.
Our method consists in approximately reducing
H in the vicinity of resonance r to the time-de-
pendent Hamiltonian

H~ (v,x,~) = v'/2-M cosx -P cosk(x —7).

The width ~ of the stochastic layer of the reso-
nance with amplitude M has been computed in
Ref. 5 which generalized the results of Ref. 1
obtained for M/P =4= 1. It yields w ~Pexp(-1/
p)/Mp"" where p=2M'~'/mk, p«1. If P/M is
of order p', then

w ~ p
~ exp(- 1/p),

where X=2k+1-s. At p,. =[1—1/(X+1)'~']/X,
w(p) has an inflection point. The very steep rise
of w(p) leads us to define a threshold of blowup of
the stochastic layer as the value p, = [X+2 —2(X
+ 1)'~']/A. ' of p where the tangent at p,. cuts the p
axis. Two approximations allow us to reduce H
to IJ~. First we make a Taylor expansion of H in
I in the vicinity of I„and replace the V„(I )'s by
the constant V„(I„)'s and keep the terms of the
expansion of H, (I) to second order. ' We then go
to new action variables ($, q), such that their
axes are aligned with the tangent and the normal
to the energy curve at I„[see Fig. 1(d)]. These
variables are defined by the generating function
F'( $, q, K) = B .(I„+(r + qu„), where w„= u(l„).
The new angle variables are x= BF'/B) = r ~ K and
y= BE'/Bg= ~„~ t7. Let (n„, P„), n~g, be defined
by n= n„r -P„v„. Then n ~ 8 = n x —P„y. For not
too high values of e, motion occurs in the vicin-
ity of the unperturbed energy line. Thus g is of
order $' and the $q and q' terms are neglected.

This yields a new Hamiltonian

H'($, q, x,y)

=a)'/2+sr„q+ g U„cos(n„x —P„y+y„),
nba

where a =r ~ v„~ r, with v„=B~/BI(T„), U„=e
x V (I„); the constant term H, (I „) has been deleted
since it plays no role in the dynamics. We now
proceed to the second approximation and retain
in the sum of H' only two terms, the one pre-
viously labeled x that describes the primary
resonance of H and one of the other elements of

Let this last term be labeled by m. The
question of the right choice of m will be solved
later. We then obtain an approximate Hamilton-
ian that is written

H" (g, q, x,y)

=@$2/2+&@„2@+U„cosx+U cos(n x —P y),

where the constant phases X„and X have been
dropped, since they can be suppressed by a sim-
ple change of the origin of x and y. The canonical
equations of IJ" allow us to write a second-order
differential. equation for x which is the same as
the one obtained from the canonical equations for
H~ with ~=p ~„'t/n, &=n. , & =&IU„I, P=&IU.

I

where b =
~ a~ n„'/(P '(u„'). According to Eq. (5)

the largest blowup of the stochastic layer of reso-
nance M is given by the m term in H' which yields
A. maximum and consequently corresponds to a
maximum. The minimum value of & such that p
=2~U„a~' '/(m~ p„~ &u„') equals p, gives the thresh-
old for LSS. As

~ U„a~ is a growing function of e,
the threshold corresponds to the minimum value
of P . Generally this leads to the retention in the
sum of H' the m term for which n„/P is maxi-
mum and consequently such that m has the direc-
tion closest to r. This reduction of H to H~ makes
sense only if the nonlinearity of H is mostly borne
by II„ that is, if the perturbed motion remains
close to the unperturbed energy line. A necessary
condition for this is a»er [B'V„(I„)/BI'] r, n
aa. In the opposite case (for instance if H, is
linear in I) the method of Fukuyama etal. ' can
be used. It amounts to going to the action-angle
variables of the integrable Hamiltonian H, (I)
+ eV(I) cos(r ~ 6 + y „). The interaction of the
primary resonances of the transformed Hamil-
tonian yields again a steep rise of the width of
the stochastic layer. '

We illustrate the case of a unique primary reso-
nance on H . Here r = (2, —2) and m = (3, —2).
There results a = 24, 0 = r, J3 = -W2/(2u„); I„
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corresponds to I,=5I, and can be computed from
H, (I„)=E. A straightforward application of the
above formulas yields E„'=0.078 for the LSS
threshold estimate.

We now deal with h'. The role of c is played
here by /E, where E is the total energy (this is
obvious by replacing the x, and y, by the x,. /KE
and y, /KE). In order to give k' the structure of
Eq. (1), we need to go to some action-angle vari-
ables. We can do this in two ways. The first
one consists in taking the action-angle variable
(I, 8) of the quadratic part of k' defined by x;
=(2I;)' 2cos6;, y, = (2I;)' 'sin8, , i =1,2. There
results H; (I ) =I,+I„s= ((0, 1), (0, 3), (2, —1),
(2, 1)], V, ,'=(2I )'"(I ~1,)/2, V, ,' =~W21,"/
H' so obtained has no primary resonance. When

!

the Kolmogorov transformation is applied once,
one gets

Ho
' (J) =J,+J, —(5J,2+ 5J~' —4J,J2)/12,

H~" (J) =J,+J2 —5(J, + J2 + 4J,J2)/12.

There is now a unique resonant term r = (2, —2)
with amplitude W„=—7J,J,/6 or W„'=,'-W„. As
X„=( 2v'E,—2'),—there results l U„l= 7E/24, I U„' I

= 5E/24, ~ = -28E/3, g+= 20E/3. The closest
nonresonant term is of order e' =E' ' and has
the direction m = (4, -5) so that k = n„= 9& and p
= —,'; the parameter A of Eq. (5) is 5. This yields
the estimates E, =0.08 and E,'=0.115.

A second way of dealing with k' is to use first
the generalized Birkhoff normal forms. ' We
perform on h' two successive canonical trans-
formations with generating functions

f, '(x, q} = x,q, +xp, +—', (+ 2@2'/3+ 2q, q, +x,2q, + 2x, x,q, +x, q, ),
and

f.'(5, y ') = k, v, '+ h.y.'+ (17[(,y, "+&.x."+K'($,y, 'x."+$.v, "y,')]
+ 7[),'y, '+ $,'y, '+K'($, $,'y, '+ $,'$, y, ')])/144,

where K'= 3 and K =1, that define successively the variables ($,q) and (x', y'). They yield the new
Hamiltonian

h" '(x', y') =—', (x,"+x,"+y,"+y,")+k," + k,' +0 (E'),
where

k, '(E', P') = —[5(x,"+x2' +y,"+y,") +A']/48

k ~(g', f') = 2I 2(x, 'x, '+ 2y, 'y, ')8„'+[x,'~ax, '2+ 2(y, '2+ y, '2)]B„')/27,

= —28(x, 'y, ' —x,'y, ')', A ' = 20(x,'x, '+ y, 'y, '),

and B,, ' =x,. "+3x,. 'x,.". Action-angle variables
are defined for h" as they were before for h' and

yield a Hamiltonian with an angle-independent
part IIO" already defined and a set 8' of angle-
dependent terms. Among these terms, only the
(2, -2) one is of order e'= E and its amplitude is
again given by W„'. It is also the only one to be
resonant so that F=(2, -2). We again use the
method for one primary resonance. Among the
other angle-dependent terms which all are of
order e'=E ', the direction closest to Fis m

=(2, -3) [also m'=(3, -2) for k']. Both m and
m' yield n =z' and I p l= —,'. The parameter A. of
Eq. (5) is 3; parameters J„, a', and IU„') take
the same values as before. This yields the esti-
mates E, '=0.106 and E,"= 0.15. The fact that
there is only one angle-dependent term of order
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! c' =E explains why E, ' is better than E, since
we are not led to neglect angle-dependent terms
of order ~' =E as before. Going to higher-order
normal forms would not improve E, ' since
there will still remain the error due to forming
the Taylor expansion of II in order to get II~.

The analytical, methods of this Letter and those
already availabl. e' ' for computing the threshold
of LSS show the usefulness of the structure of Eq.
(1) which appears as a standard form for this
computation. Al. l these methods approximate the
considered Hamiltonian by a new one with only
two cosine terms in Eq. (1). Further investiga-
tion is left to be done in order to avoid this ap-
proximation or to give error bars on the esti-
mates.
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A breather soliton of the sine-Gordon equation is shown to behave stochastically in
the presence of an external oscillating field, which leads to random pair creations of
kink and antikink solitons.
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H= —,
' f dx[u, '+u„'+2(1-cosu)] ffudx, -(2)

while the total momentum of the field P =- —Ju„u,

Recently there has been a surge of interest in
statistics of solitons in various physical fields. "
Since nonlinear wave equations governing solitons
are completely integrable, there must be some
mechanisms which enable us to consider a statis-
tical ensemble of solitons. For nontopological
solitons the thermal mechanism may be natural
since its activation energy can be very small.
But for phase solitons such as kinks of the sine-
Gordon (SG) equation, which have a finite creation
energy, nonthermal excitation mechanisms will
play an important role, especially in nonequilib-
rium systems. In this Letter, I show that kink
solitons of the SG equation can be randomly
created through the stochastic instability of
breathers in the presence of an oscillating exter-
nal field. This system is the model of many
physically interesting phenomena such as charge-
density waves in a one-dimensional condensate
in the presence of an ac electric field, ' the mag-
netic-flux propagation on a Josephson-junction
transmission line with an ac external current, '
and the creation of baryons from a meson through
the interaction with an external oscillating field. '

The interaction between SG solitons and an exter-
nal field is described by

u« —u„„+sinu = e cosset -=f(t),

where e is a small parameter and f(t) is an ex-
ternal field. The Hamiltonian of Eq. (1) is

x& is still conserved when u(~, t)-u(-~, t) =0
which is satisfied for a breather and a kink-anti-
kink pair. Therefore we can choose a reference
frame such that the center of mass of a breather
(or a kink-antikink pair) is at rest even in the
presence of the external field. This is equivalent
to eliminating one degree of freedom of a breath-
er and enables us to perform a simple perturba-
tional approach.

If &=0, Eq. (1) is completely integrable in
terms of canonical variables which consist of
the scattering data of the associated linear eigen-
value equation, ' and it has the following soliton
solution:

u=4arctan[T(t)sech2k(x -x,)],
where x, is constant and T(t) = sin(n/16) tan8, k
=-,'sin8 for a breather and T(t) =(e~+e ~) sinh(q /
16)/(e~-e ~), k =e~+e ~ for a kink-antikink pair.
Here (0, n) and (p, q) are the canonical conjugate
variables which are given by

8(t) = e(0), p(t) =p(0),

n(t) =16tcosH+n(0), q32( ~e-e ~)t+q(0),

where the unperturbed Hamiltonian is given by
H, = 16sin8 or H, = 32(e~+e ~). Since the long-
time behavior of 0, p is of interest in the presence
of the external oscillating field, the averaging
method for Hamiltonian systems can be applied.
Substituting Eq. {3) into Eq. {2), we have the ap-
proximate Hamiltonian

H =H, + (2~f/ )lkn[-T + (1 + T') ' '],
1982 The American Physical Society 1883


