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A theory of desorption. of atoms and molecules from solid surfaces based on a classical
stochastic diffusion formulation is presented. A simple rate expression is obtained which
has the form R = (Op/2n) f(T)exp(-D, /hT), where Qp is the surface-adsorbate vibrational
frequency, f(~') =1 for atoms, and for molecules f('I') depends on the parameters for the
frustrated rotations at the surface. This theory has been applied to the desorption of both
atoms and molecules and excellent agreement with experiment is obtained.
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It is well established experimentally that the
rate of first-order desorption of atoms and mol-
ecules from surfaces can be described by an
Arrhenius expression R =A exp( E/kT), -where
E is assumed to be closely related to the bond
enthalpy. Such an expression is obtained from
simple thermodynamic arguments applied to the
transition state; however, it is difficult to quanti-
fy this theory since the transition complex for
desorption is not easily identifiable. Although
there is considerable disagreement between the
experimentally derived preexponential factors
for desorption of molecules, ' most experimental
results lead to preexponential factors much larg-
er than expected from transition-state theory.

One would like to obtain the rate expression in
terms of the microscopic properties (e.g. , vibra-
tional frequencies, bond energy, etc. ) and dynam-
ics of the adsorbate-surface system. Unfortunate-
ly, despite recent theoretical progress, ' there
is not as yet a theory capable of reproducing the
experimental rates of desorption for atoms and
molecule s.

In the present paper we report such a theory
based on a classical stochastic diffusion equation
using a general form for the adsorbate-surface
interaction. The result is the simple expression

R=(Qp/2n) f(T) exp( D, /kT),-
where 0, is the characteristic frequency of the

adsorbate-surface interaction potential. D, is
the well depth of this interaction and f(T) is
given by

(lb)

for atoms and molecules desorbing from the sur-
face, respectively, where the quantities p, , l,
Q„and 6, are related to the frustrated rotation-
al motion at the surface (vide infra). The evalua-
tion of this expression is straightforward, re-
quiring only the basic parameters of the interac-
tion potential between the adsorbed species and
the surface. Equation (1) is valid for low cover-
ages, where there is no interaction between the
adpar ticles.

To obtain Eq. (1) consider first the motion of
an adatom in the direction perpendicular to the
surface and (following Adelman et al. ' and Tully' )
define on the surface a set of primary zone
atoms that are strongly interacting with the ad-
atom. Without loss of generality, this primary
zone can be considered to contain one surface
atom, leading to a generalized Langevin equation
of motion,
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Here x~ and x, are the coordinates of the adat-
om and surface atom, respectively, V(x~ -x, )

is the interaction potential between the adatom
and the surface, 6(t) is a memory kernel, and

E(t) is a random force. The last three terms
in Eq. (2) represent the coupling between the sur-
face atom and the rest of the crystal, which acts
as a heat bath. The equation of motion for the
adatom is

m„x~ = &V(x„-x,)/sx, d . (3)

We next take the Markovian limit of Eq. (2) and

solve it formally (using the Laplace transform
method") for x, and substitute the result into
Eq. (3). To do this we represent V(x~ -x, ) by
a set of parabolic splines in which the value of
the function and its first derivative are matched
at the boundaries of the different intervals. After
substituting x, into Eq. (3) we take the Markovian
limit to obtain a Langevin equation of motion for
XQj

m~x~ = — ' 1-, —m,d+~+F(t),s V(x„) C
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adparticle and the surface modified by the mo-
tion of the surface atom [cf. the first term of
Eq. (4)]. The rate of desorption is obtained by
dividing j(x,) by the number of particles at the
surface. ' This leads to Eq. (1) with f(T) = 1 for
all values of P, 0, and T which are of physical
interest. Equation (6) implies that the expression
for the rate of desorption is independent of x,.

In Fig. 1 we compare our results with the ex-
perimental values and with the calculations of De
et a/. ' for the systems Xe (physisorption) and K
(chemisorption) on W(111). For both systems we

used the same parameters as De et al. As can
be seen in Figs. 1(a) and 1(b) the agreement be-

in which both the friction coefficient and the effec-
tive frequency are functions of the distance from
the surface. To calculate them we used the De-
bye model for the solid, leading to P =C'Po,», /
m~m, Q and O'= QD,», '+C/m„where C is the
curvature of the potential at the point where P

and 0 are calculated. The friction coefficient
PD,», and the frequency QD,b&, are given in terms
of the Debye temperature of the substrate. "

Following Kramers' but generalizing to a po-
tential appropriate for describing desorption, we

solve for W(x, u), the probability of finding the
atom at a distance x with a velocity u, such that
W is Maxwell-Boltzmann at the bottom of the
well and goes to zero as x -~. We then calculate
the diffusion current density crossing a plane
parallel to the surface at a distance x, from it,
given by

j(x,) = t W(x„u)udu. (5)

Care must be taken that the diffusion current at
x, only includes those particles whose kinetic en-
ergy is large enough so that they can actually
desorb. Thus, u, must satisfy the following re-
lationship:

D, = V(xo) + 2 m,duo,

where V is the effective potential between the
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FIG. l. (a} Rate of desorption of Xe on W(111}.
(b) Bate of desorption of K on W(111). The values of

and Qo for are the experimental values used by De
et al. (Ref. 2).
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tween our results and the experimental values is
excellent for both systems.

In order to generalize the formalism to the case
of molecular desorption we assume that the mol-
ecule can transform energy from the degrees of
freedom corresponding to frustrated motions at
the surface into translational kinetic energy. For
definiteness we shall consider CO on ¹isurfaces. '
For this system the most important frustrated
motion corresponds to the bending mode of the 0
atom about the Ni-C bond. To include this extra
degree of freedom we followed the procedure out-
lined above for the case of atoms, but with 8'
now a function of x, u, 6, and 6, where 6 is the
Ni-C-0 angle, and 8 =d6/dt. Equation (6) then
takes the form

D, = —,
'

p,Q, 'I '0'+ —,
' pl'8'+ V(x,) + —,

' m,du, '.
where p, is the reduced mass for the bending
mode, 0„ the vibrational frequency and l the cor-
responding distance (so that iLl'0, ' is the force
constant of the frustrated rotation). This leads
to Eq. (1) with the form of f(T) described in (lb);
8, corresponds to the maximum angle of rotation
(which we took to be equal to w/2).

Figure 2 compares our calculated results with
the experimental values of Helms and Madix'
for CO desorbing from Ni(110). We also show
the rate of desorption that one obtains using Eq.
(1) with f(T) =1. The values of the parameters
0„, I, D„and 0, were taken from Refs. I and 6.

The excellent agreement between our results and
the experimental data provides very strong evi-
dence that the frustrated rotations of molecules
at the surface are responsible for the large value
of the preexponential factor (-10") observed ex-
perimentally.

According to transition-state theory' the pre-
exponential factor is given by

A =(kT/ti)f */f~, (8)

where f* and f~ are the partition functions of the
transition state and the adsorbate layer, respec-
tively. In the ease of atomic desorption f*/fz
is usually taken as I, leading to a preexponential
factor which is proportional to kT. In the present
work the corresponding preexponential factor,
0,/2v, is directly related to the interaction be-
tween the atom and the surface. The experimen-
tal preexponential factors differ by about an
order of magnitude between chemisorbed and
physisorbed atoms. This reflects the fact that
0, changes by an order of magnitude also. Equa-
tion (8) fits the observed rates because the exper-
imental temperature ranges also increase by an
order of magnitude between the physisorbed and
chemisorbed atomic systems. For the case of
moleeules Piniir et al. ' give an expression for f*/
f,d assuming that the molecule is immobile at the
surface and that it is a free rotor in the transi-
tion state. Their expression for the preexponen-
tial factor leads to a different temperature de-
pendence than the 1/kT that we find.

To our knowledge this is the first theoretical
calculation that presents a consistent explanation
of the rates of desorption of atoms and molecules
from surfaces. We believe that it provides a
very useful tool for the prediction of rates of de-
sorption of atoms and molecules since it involves
only microscopic parameters which can be ex-
perimentally determined.

We acknowledge partial support of this work by
the U. S. Department of Energy under Contract
No. DE-AM03-76SF00767; Project Agreement
No. DE-AT03-80ER10608. One of us (Y.Z. ) is
a recipient of a Chaim Weizmann Postdoctoral
Fellowship.
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FIG. 2. Rate of desorption of CO on Ni(110). The ex-
perimental results are those of Helms and Madix (Ref.
1). The values of the parameters were taken from Refs.
1 and 6.
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A critical mixture of isobutyric acid and water was quenched from the one-phase
region into the two-phase region and, after the spinodal ring was well developed, a
reverse quench returned the system to the one-phase region. Light-scattering meas-
urements for this process exhibit a clearly nondiffusive relaxation which, at least for
early times after the quench reversal, is in good agreement with Ruiz's scheme for the
coupling of velocity and composition fluctuations.
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In a recent series of papers Ruiz and Nelson"
have discussed the properties of "active" turbu-
lent mixing of two fluids; i.e., mixing which is
observably affected by coupling between velocity
and composition fluctuations. As a simple spe-
cial case of velocity-composition coupling, Ruiz
has performed an approximate calculation for the
behavior of the relaxation of very large composi-
tion fluctuations under conditions where the mass
diffusion coefficient, D, becomes sufficiently
small that active coupling to the velocity field can
compete with diffusive relaxation.

In this Letter we report the results of an experi-
ment designed to look for active coupling effects
near the critical point in a binary fluid mixture.
In each measurement a critical mixture of isobu-
tyric acid and water, initially at equilibrium at
temperature T, in the one-phase region, was
quenched to temperature T, in the two-phase
region (at time t= -t,), allowed to remain at T,
until the spinodal light scattering maximum
reached a wave number 4 -2000 cm ', and then
abruptly returned to T, (at time t =0). Under
these circumstances, Ruiz's primary prediction'
is that

ink (t) = 2ln + C„,(t),2Dv

where k (t) is the time-dependent wave number
of the maximum in the light-scattering angular
distribution, A is a constant of the motion, t = 0
is the time of return to the one-phase region, v

is the kinematic viscosity, and n is the coeffi-
cient of the composition-gradient-squared term
in the Landau-Ginzburg Hamiltonian. C „,(t) is
the global strength of the concentration fluctua-
tions, Pq(t); i.e. ,

A quantitative test of Ruiz's prediction requires
a good estimate of the pa.rameter R —= uC„, (t = 0)/
2Dv. One renormalization-group calculation, 4

which uses an Ornstein- Zernike form for the
susceptibility of the order parameter, gives R
=B(e,/e, )' where B is of order unity, e, =(T,
—T,)/T„e., =(T, —T, )/T„and P ~s. This re-
sult is readily obtained on use of n = e'/r p,
where p is the mass density and g is the order-
parameter susceptibility. Taking g=c ~/k, T,
D(T,) =kBT/6nvp $(T,) Iwhere the correlation
length g(T) =(3.57 A)e ' ' for isobutyric acid
+water], ' C „,(t = 0) = c,', and v = 2P gives B = 3v,
An alternative renormalization-group calcula-
tion of R yields a result which is similar in tem-
perature dependence and in order of magnitude,
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