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the water-saturated speeds with no adjustable pa-
rameters. (4) The Biot theory is seen to effec-
tively cut in half the problem of understanding
acoustic propagation in porous media. It now be-
comes possible to focus on theories of the in-
dividual parameters, as has already been done,
here, for the tortuosity, a.
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For a prescribed adsorption-desorption equilibrium maintained locally through a
permeable solid, the concentration of a chemical substance is governed by the diffusion-
convection equation 9¢/8t = (DV? =%+ V) ¢/(1+ K !¢)] in which ¢/(1+ K~ 1¢) is the free
concentration of the substance. Solutions of this nonlinear equation are shown to be
related analytically to solutions of the elementary linear diffusion equation. This re-
markable correspondence is utilized to obtain exact solutions to the nonlinear diffusion-

convection equation.

PACS numbers: 66.10.Cb, 03.40.Gc

Consider a homogeneous permeable solid filled
with a fluid which contains a chemical substance
of concentration ¢ =c(§,t). Suppose that the solid
microsurfaces adsorb a fraction of the chemical
substance and leave a local free concentration
¢/(1 +K 'c) in the fluid at adsorption-desorption
equilibrium,! where K is a prescribed constant.
With the adsorption-desorption processes rela-
tively rapid and their equilibrium maintained lo-
cally, the total concentration ¢ may change as a
result of diffusion and convection of the free con-
centration, and one obtains the governing equa-
tion

ac/ot =(DV2-7-9)c/(1 +K c)], 1)

where D (= const) is the diffusivity of the chemi-
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cal substance and V is the local convective flow
velocity of the fluid. Equation (1) is the diffusion-
convection analog of the Langmuir-Hinshelwood
(Michaelis-Menten) rate expression featured in
catalytic? and enzymatic® kinetics.

By introduction of the dimensionless dependent
variable 6 =(1 +K 'c)™!, (1) takes the form

36/0t =62(DV26 ~ v -V0). (2)

For the special case v=0, (2) becomes the equa-
tion for nonlinear heat conduction in solid hydro-
gen,* where 0 (also positive and less than or
equal to unity) is a dimensionless thermal varia-
ble. The author has shown that one-dimensional
solutions to the latter nonlinear heat-conduction
equation are related analytically to solutions of

© 1982 The American Physical Society



VOLUME 49, NUMBER 25

PHYSICAL REVIEW LETTERS

20 DECEMBER 1982

the elementary linear diffusion equation,* and
this exact correspondence has been employed in
recent theoretical work by others.’’® It is shown
in the following that the general solution to the
one-dimensional specialization of (2) with

0=0(x,t), v-V0=0v080/ox, v(=const)#0 (3)

is also obtained by invoking a transformation
which expresses 6 in terms of solutions to the
linear diffusion equation. Although this analytical
procedure is related to the more immediate solu-
tional method® for v =0, the transformation for-
mulas below show that v =0 is a singular special
case precluded by the present treatment.

If one assumes that the one-dimensional uni-
form-flow conditions (3) hold, it is possible to
recast (2) as the integrability condition

0 gy = 29_)

at ® )~6x <UO—D6x ’ (4)
which guarantees existence of an extensible dis-
tance coordinate X =X (x,t) such that

6 t=dx/8x, v0-Dob/ox =0x/dt, (5)
From (5) it follows that the total differential of

X is”
dx =0"Ydx + (v6 —D 96 /ox)dt. (6)

Either (6) or the first equation in (5) and 6 >0 im-
plies that X is a monotone-increasing function of
x for fixed £; thus, the correspondence x —X is
one to one for fixed f{, and there exists a single-
valued positive function ¢ =¥ ,¢) such that

x==v"'D Iny. (M

The function ¢ is monotone decreasing with in-
creasing ¥ for v >0 and monotone increasing with
increasing ¥ for v <0, By virtue of the first equa-
tion in (5), the derivative of (7) with respect to

x at fixed ¢ yields

0 =—v" DY~ (3y/0X) (8)
and hence
00 __ (Y teR
vé —Dg;——D(a)%) 57 (9)

The substitution of (7), (8), and (9) into (6) pro-
duces

. ?.i—l <?_4i>_182¢
dx "<a£> dy =D 5% 552 dt. (10)
But since

dy =@y/x)dx +(0y/ot)dt, (1)

(10) implies that ¢ satisfies the linear diffusion
equation

oy/at =D (3% /3%2). (12)

Thus, (4) is exactly solvable by use of familiar
or easily obtained solutions to the classical equa-
tion (12).

For unbounded X the general solution to (12) is
expressible in terms of the initial condition ¢ (&,
0) as

Y ,t)
=@ty 2 [ "expl- (& - 5)2/4Dt)9(s,0)ds. (13)

One obtains the general solution to (4) in para-
metric form by putting (13) into (7) and (8); a
prescribed initial condition 8(x,0) fixes ¥(s,0) in
(13). The following basic solutions serve to illus-
trate the c-¢ relationship and some of the salient
nonlinear aspects of diffusion convection governed
by (1).

(a) Uniform steady state, ¢ =c, =const for all x
and f. The associated solution to (12) depends on
both ¥ and ¢,

Y =exp(-aX +a,?Dt), (14)

with the constant ¢, =vD™ (1 + K 'c,)™ .
(b) Generic x-dependent steady state,

c=(c, +bKe"™P)/(1-b,e"™P), (15)

defined for vx <D 1n(b,”*) with the constant &, > 0.
The associated solution to (12) is a slight modifi-
cation of (14),

¥ =exp(-aX +a,?Dt) +b, (16)

with a, as in (14). Notice that the value of b, re-
lates simply to the x coordinate origin in (15).

(c) Steadily propagating fixed-profile wave, ¢
=K (0! - 1) with 6 in the range (0<) 8, <6 <0,
(<1) and given implicitly in terms of the quantity
x —0,0,0t by

6 -6,)°(0,-0)%
=expl (6, — 6, D™ (x —6,0,0t)]. (17)

The fixed-profile wave propagates with constant
velocity 6,0,0 in the same direction as the flow
(i.e., toward x =+ < for v > 0), and the terminal
values of 6 are set by the sign of v [i.e., 6 (+ ,t)
=0,, 6(==,t) =0, for v >0]. One arrives at (17) by
employing a linear superposition of two solutions
of the form (14) to satisfy (12),

¢ =exp(—a,xX +a,?Dt) +exp(—ax +a,”Dt),  (18)
with a;=vD™16; for j =1,2. The substitution of
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(18) into (7) and (8) produces two equations from of this type is the linear superposition

which ¥ can be eliminated algebraically, and thus - .

(17) is obtained (modulo a trigvial multis;;licative ¥ =exp(=ak +a,"D1) + (/)" exp(-27/AD1) (19)

constant related to the x or ¢ origin). with a, as above, ¢, a positive constant parame-
(d) Localized variation on a uniform background, ter, and¢>(,/2eD)" 2 a,| ! to insure the mono-

with ¢t «,t)=c,. The simplest solution to (12) tonicity of (19) with increasing X and fixed t. By

| substituting (19) into (7) and (8), one obtains

x =v"'D{a,?Dt + 2a,(Dt)"?y—Inl1 + (¢, /t)"2 exp -2}, (20)

8 =v™D{a, + (D) YA[1 +(¢/t,) 2 expy?] 1, (21)
where

y =& —2a,Dt)/2(Dt)"'2, (22)

Observe that the value ¢ =¢, is maintained at the center of the propagating and diffusing region of varia-
tion; setting ¥ =0 in (21) and (20) yields

6 =v"'Da, —-c =c, (23)
along the region’s trajectory
x =v(1+K ;)" % —v™'D Inf1 + (¢, /t)"2]. ‘ (24)

(e) Step-function initial condition,

§c+ (= const) for x>0,
c(x,0) = (25)

’\C- (= const) for x <0.
From (25) and (8) it follows that

(exp(—ajc) forx=0,
YE,0)=1 (26)

( exp(—a.x) for x <0,
wherea,=vD (1 +K 'c,) '. The substitution of (26) into (13) produces
W@, t) =31 +erflL @) /% ~ (0£)'%a, ]} exp(~ a,X +a,*Dt)
+3{1—erfl3(D1) V% - (Dt)2a_1} exp(-a.% +a.?Dt). 217)

Since the error function has the asymptotic values +1 for a large positive argument and — 1 for a large
negative argument, (27) manifests a two-step form for ¢; the steps propagate along the X-space trajec-
tories ¥ =2Dta., ¥ =2Dta_, and have a AX breadth about equal to 2(D¢)’2. The associated solution for c,
obtained in parametric form by substituting (27) into (7) and (8), has a relatively complicated structure
compared to its one-step linear-theoretic correspondent

c=%(ci+c.) + 3(cy —c)ertl30t) V2 (x —vt)], (28)

which follows from the initial condition (25) and (1) with K =<,

'The equilibrium of interest here is realized directly if the adsorption process is bimolecular and the desorption
process is monomolecular, for then one obtains the equilibrium condition ¢’c/c’’ =K where ¢’, ¢’’ denote the con-
centrations of free and adsorbed molecules, respectively; then from ¢’ +c¢’’ =c, if follows that ¢’ =c¢/(1 +& ¢).
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A theory of desorption of atoms and molecules from solid surfaces based on a classical
stochastic diffusion formulation is presented. A simple rate expression is obtained which
has the form R =(Qy/2r) f(I')exp(— D, /kL), where Q, is the surface-adsorbate vibrational
frequency, f(£) =1 for atoms, and for molecules f(I) depends on the parameters for the
frustrated rotations at the surface. This theory has been applied to the desorption of both

atoms and molecules and excellent agreement with experiment is obtained.

PACS numbers: 68.45.Da, 05.40.+j

It is well established experimentally that the
rate of first-order desorption of atoms and mol-
ecules from surfaces can be described by an
Arrhenius expression R =A exp(-E/kT), where
E is assumed to be closely related to the bond
enthalpy. Such an expression is obtained from
simple thermodynamic arguments applied to the
transition state; however, it is difficult to quanti-
fy this theory since the transition complex for
desorption is not easily identifiable. Although
there is considerable disagreement between the
experimentally derived preexponential factors
for desorption of molecules,’ most experimental
results lead to preexponential factors much larg-
er than expected from transition-state theory.

One would like to obtain the rate expression in
terms of the microscopic properties (e.g., vibra-
tional frequencies, bond energy, etc.) and dynam-
ics of the adsorbate-surface system. Unfortunate-
ly, despite recent theoretical progress,? there
is not as yet a theory capable of reproducing the
experimental rates of desorption for atoms and
molecules.

In the present paper we report such a theory
based on a classical stochastic diffusion equation
using a general form for the adsorbate-surface
interaction. The result is the simple expression

R=(Q,/2m f(T) exp(-D, /kT), (1a)

where €, is the characteristic frequency of the
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adsorbate-surface interaction potential. D, is
the well depth of this interaction and f(7) is
given by

2ul%9,.25,2

fatom(T) =1, fmol(T) =10

mkT (1b)

for atoms and molecules desorbing from the sur-
face, respectively, where the quantities pu, 7,
Q,, and S, are related to the frustrated rotation-
al motion at the surface (vide infra). The evalua-
tion of this expression is straightforward, re-
quiring only the basic parameters of the interac-
tion potential between the adsorbed species and
the surface. Equation (1) is valid for low cover-
ages, where there is no interaction between the
adparticles.

To obtain Eq. (1) consider first the motion of
an adatom in the direction perpendicular to the
surface and (following Adelman et al.’ and Tully?)
define on the surface a set of primary zone
atoms that are strongly interacting with the ad-
atom. Without loss of generality, this primary
zone can be considered to contain one surface
atom, leading to a generalized Langevin equation
of motion,

o v -
msxsz————ﬁ—(x;; xs) - MWK
S
-t
+msf0 6(t = T)x (T)dT + F(¢). (2)
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