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It is shown here that superfluids (such as 3He-A and Bose-condensed spin-polarized
hydrogen) whose order parameters transform like an angular momentum e.igenstate

~ j,m & 0) will have similar superfluidity —similar Josephson and vortioity equations.
In particular, if spin-polarized hydrogen condenses into the 5 state as currently be-
lieved, it will not have a stable superflow. Nonuniform magnetic fields can also induce
in it a persistent current similar to that of He-A.

PACS numbers: 67.40.-w, 67.50.Fi, 05.30.Jp

The recent stabilization of atomic spin-polarized
hydrogen' (SPH) has generated much hope in the
observation of Bose-Einstein condensation in this
system. A hydrogen (H) atom can be regarded as
a boson because it contains two fermions. Re-
cently, Siggia and Ruckenstein' pointed out that
SPH, when condensed, wil. l behave like a spin-&
Bose superfluid. This is because at low tempera-
tures, only the lowest two hyperfine states, usual-
ly refered to as a and b, are important. They
correspond to the alignment and misalignment of
the proton spin with the external field, modified
by the hyperfine interaction. The electron spin is
basically held fixed by the external field because
it has a magnetic moment (p, , ) 10' times larger
than the proton's (p~). More recently, Statt and

Berlinsky' pointed out that because of molecular
recombination effects, condensation is mostly
likely to occur in the b state.

The purpose of this paper is to show that, no
matter which hyperfine state SPH condenses into,
the flow properties of this prospective S = 2 Bose
superfluid will be very similar to those of 'He-A,
aP-wave BCS superfluid well known for its pe-
culiar superft. uidity. In fact, we shall see that all
superft. uids whose order parameter transforms
like an angul. ar momentum eigenstate

~j,mt 0)
will. have similar flow properties.

'He-A consists of Cooper pairs which are orbit-
al angular momentum eigenstates ~L =1,L l=1)

along a certain direction l. The pair wave func-
tion is I'»(p)o:P p, where P =y, +i@„P, $,=0,
l =P, &&@» and p is the relative displacement of
the helium atoms in the pair. The triad structure
of the orbital order parameter p is the cause of
the peculiar flow properties of 'He-A. For ex-
ample, in simply connected containers (because
of the surface boundary condition on l), 'He-A

wil. l carry a persistent current whose magnitude
is of the order of a few vortices. ' On the other
hand, superflows (with larger winding numbers)
in multiply connected containers are not intrinsic-
ally stable. ' All these are very different from
the behavior of the more familiar superfluids
such as 'He and superconductors, whose order
parameters are scalars.

That SPH can be treated as a S =2 Bose gas can
be formulated as follows. The Hamiltonian of
SPH is H=T+Z+t/, where T is the kinetic ener-
gy, V is the interaction between the H atoms,
and Z is the sum of the Zeeman energy and the
hyperfine interaction (g),

Z= fd Xg [2(p, 0 —ppT)'H „)+ g1 'V]17.

Here& w (o) is the proton (el.ectron) Pauli matrix,
H, „,(r) is the external field, and rt = (q&, ) is the
hydrogen Bose operator with el.ectron (proton)
spin index p, (i). It is straightforward to show
that the matrix U = exp[i7 &&o &~/4], with e
= cot '[(p~+ p., )8,„,/g] and n =II,„t, diagonalizes
Z locally, so that

Z = fd'x q U [-,' (p, o p, ~) ~ H „,+—-,' g (~ ~ n ) (o ~ n ) ] Url,
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where

p, —
/ =P, —u..=(g/2e, „,)tan~/2.

In the uniform case, n(r) =i, the lowest two states of Z are (U7/) „., i =+1. They are the so-called a
and b states, and are far away from other excited states because p, , /g~ -10'. When the direction of
the external field n is slowly varying, the dynamics of the low-lying states can be described by approx-
imating Uq as (Ui/)„,. = f ~p;, where f is a normalized static electron spinor fixed by the external field,
n of=-f, f ~f=1. In terms of f, which obeys Bose commutation relations, 8 assumes the form of an
interacting spin-& Bose gas. To the first order in e (e -10 ' for H,„,=100 kG), we have

II = f d'~((k' /2M)!(V +iA)(!' —p~A ( tv(/2 —g $[p.,II,„, —(Fi/8 ,M)( V, n, ) ].I
+2 fd'~d'V ~(x, y)( (x)N, '(y)4, (y)(; (x), (1)

where A,. = (M/h)zo, . V, n-&n Te./4q w = (h/Mi) f ~Vf, and

p~b, =n[p~H, „,+ g/2+@(V, n, )'//'/4M. ]—(V,. eV, n)h'/4M. .
The order parameter of (1) is a spinor 4' = (ttI).

In the literature, 4 is usually represented in com-
ponent form 4 t= (4', *,4~*) with respect to the ex-
ternal field. In a uniform field, the question of
whether only one or both components of 4' would
be formed has been studied. " By noting that any
spinor 4 is a maximum spin state along a certain

A A

direction l, l ~ =4, the question of how many
components there are in the condensate is simply
a question of whether / is aligned with n (one com-
ponent if /=an, and two otherwise). A "two-com-
ponent" superfluid with respect to a given axis
can be a "single component" to a different axis,
and vice versa.

A

In thermodynamic equilibrium, one expects /(r)
=n(r), i.e. , condensation takes place in the local
a state. There is, however, the realistic ques-
tion of whether SPH could reach the true equilib-
rium state within the time scale of the experi-
ment. It is believed that because of the molec-
ular recombination effect caused by the hyper-
fine mixing in the a state, most of the atoms in
the normal phase will. be in the 5 state. ' One
therefore expects to find l = -n in the condensed
phase. While it is important to investigate the
effects of the field gradients on the recombina-
tion rate and the magnetic relaxation time, which
determine how fast the system reaches equilibri-
um, it is clear that whenever condensation oc-
curs, a spinor field 4, and hence a vector field
l, will result. Here, I focus on those phenomena
caused by the nonuniformity of f, as generated by
external fields, or by hydrodynamic effects.

The relation between 'He-A. and SPH is that
their order parameters transform like an angular
momentum eigenstate 4" ', ra~0. That is to say,
the normalized order parameter 0 =—4'/!4! (omit-
ting the superscript jm) can be obtained from a

V && v, = (mh/M)-', e„,,/„V/, x V/, . (2)

Before discussing the implications of (2) on SPH,
for simplicity and for theoretical. reasons, I shall.
first consider the following S=2 Bose gas: H, ~,
= (h'/2M)f!Vg! '--,'fg ~~g /i~Z+ V. Its relation
with SPH will be discussed shortly. Equation (2)
implies the following for Hy/2..

(i) Persistent current and macroscopic angu/ax
momentum. —When /(r) is parallel to n(r), the
supercurrent of H, ~, is of the form' g=p, v, [see

! reference order parameter 5, (&,f, =md» f, f,
= 1) by a rotation, K = exp(- i8v J))„where J is
the angular momentum operator. This also im-
plies that / Jf =mf, where /=R(v, 8)z, and R(v,
8) is a rotation about the axis v through an angle
8. [For 'He-A, j = m = 1, we have J = —ip &«p,
g, =-.""(x+iy) p, p =p/p, a dg "g=- f!&!2dp/4~
For SPH, we have j =m = —,, J=T/2, and f, t = (1,
0).1

Since normal. ized order parameters at neighbor-
ing points must be related by infinitesimal rota-
tions, we have 6r V( =iS',. Q, ,J,5, where 0,, is
a real. tensor. Under a Galilean transformation,
r —r+ut, f acquires a phase factor exp(iMu r//i),
where M is the mass of the boson or the Cooper
pair. The quantity

(v, ),. = (5/Mi)f ~V,. f = (noh/M)Q, , /, .

therefore transforms like a velocity. ' It is easy
to show that 0,, = (/VI/m. ~)v„/, + (V,. /&/. ), . The
spatial variations of f are thus completex, y speci-
fied by v, and V,. l, . Likewise, the supercurrent
and free energy generated by V( can be written
entirely in terms of these quantities. According
to Ref. 4, because of the condition V,. V, f =V, Vf,

v, and / are further related (for all j,m + 0) by
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also discussion (a) below]. Equation (2) implies
that a nonuniform / wil. l produce a current g and
an angular momentum L= r&&g whose magnitude
is similar to that of a single vortex. ' The per-
sistent current is a remarkable effect of Bose
condensation. It occurs even in the case of an
ideal Bose gas. The reason is that as long as n

is varying, there are no spinor eigenstates with
real arguments. The ground state is genuinely
complex and carries a current, which will be
magnified enormously by condensation.

(ii) Stability of supsrf low For.—simplicity, con-
sider the case n =H„, =z. The Ginzburg-Landau
free energy of H, y, is F =F&(!+I',I 'z)+-'@IV+I',
whe

minimized when l =z. The gradient energy can be
rewritten as

F, =,'~ LI (@vs/@)'v, '+ (v, I, )']
I
~

I

'+ (V I@I )'j .

Equation (2) allows transfer of energy between
the superf low &, and V, l, , and transfer will oc-
cur if either type of energy is too high.

Let us consider the simplest flow configuration:
A

l =z, v, =u. To test its stability, ' we consider
small. variations of I (up to second order) of the

~h

form 5l =X-2A.'z, X @=0, with an accompanying
change in v, ,

(2M/5)bv, =-, (X„VX, —X,VX„)+Vy,

re Fz is the bulk free energy which will be because of (2). The change in the free energy
(after minimizing with respect to Vcp) is

OF =-,'If[(V,. Z,. )'+(2Mu/h)(Z„V), —X,VX„)] !e!'--,'M ZZ',

where the l.ast term comes from the variation of
the bulk free energy, and M is the magnetization
of the initial configuration. The gradient energy
is always unstable. ' The most unstable mode is
a helical distortion, X=XR(Z, q r)x, q=-Mu/5.
Collapse of flow will take place if the flow energy
is larger than the field energy. On the other hand,
if the initial configuration is the b state, 3 = -z,
then there will be no energy barrier preventing
the decay. of flow through / distortions. '

(iii) Zosephson equation. —The time derivative
of v, gives

From the equilibrium motion of g, the first term
can be identified as V[- p, +I (3 —M/X)] in the
nondissipative hydrodynamic limit, where p, is
the chemical potential, M is the magnetization,

and X is the susceptibility. Thus, chemical po-
tential gradients or nonuniform nonequilibrium
magnetization can both drive l and v, in motion.

(iv) Line defects. If 6 =0 —in H, g» the order
parameter space is precisely SU(2). Since
II,(SU(2)}=0, there are no topologically stabl. e
defects. " The effect of 4 is to stabilize certain
kinds of defects by producing an energy barrier
in the process of deformation. Although 4 tends
to stabilize the vortices in the a state, the vorti-
ces in the b state, l = —z, remain energetically un-
stable, as can be seen from the energetics of the
family, & t(t) =(sin(tv/2), e '"'cocos(tn/2)}, 0 ( t
(1, which implies dF(t)/dt(0 when n(r) =z.

Returning to SPH, I note the following:
(a) Strictly speaking, the order parameter of

SPH is the tensor (q„,) = U~f 4' rather than simply
the spinor 4 =!@!0;although only + itself contains
dynamics. Since

V; (fl)= i[(M/h)(~, +so),. +V; l&&l T/2+V, nxn 0/2] ff, .

the gradients of the tensor f& are specified by
V,. l, , V,. n, , and the sum v, +w. The general.
form of the supercurrent allowed by symmetry
is therefore"

g,. = p, (v, + so),. +n x l ~ {BV,n+ CV,. I). .

It is expected from Eq. (1) that B-e, and C is re-
lated to the interaction of the H atoms. " Since w

and —n are the "velocity" and the spin quantiza-
tion axis of f (similar to v, and l of K), they there-
fore satisfy Eq. (2) with the replacement v, -w,
I - n For -I=+. (-)n [so that f/ becomes a spin-
0 (- 1) object], we have V & v, = —(+ )V &w. A non-
uniform field n will. therefore generate a persis-

! tent current as discussed in (i) as long as the con-
densate is not in the l.ocal a state. On the other
hand, whenever l moves away from n, the hydro-
dynamics of SPH must be described by both (2)
and (3).

(b) When the external field is uniform, n =z,
Eq. (1) reduces to IJ,~,. Discussion (ii) and the
example K t(t) in (iv) therefore apply to SPH.
Since p.~~ —50 mK when B„,= 100 kG, the ex-
ternal field strongly stabilizes the a state (re-
quiring a critical velocity of 10' em/see). On
the other hand, superflows in the b state remain
unstable. One therefore expects that in a p,
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measurement (such as a, study of the oscillation
of a cylindrical cavity containing SPH), the b

state will show a much smaller effective super-
fluid density and will produce a lot more damping
than the a state.
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The experimental measurements of tortuosity of porous structures using either the
acoustic index of refraction of superfluid 4IIe or the electrical conductivity are shown
to agree with each other. This and other measured parameters are used to calculate
directly the acoustic speeds of water-saturated, fused-glass-bead samples; there are
no adjustable parameters and agreement with experiment is excellent. The dependence
of tortuosity on pore volume fraction, q, is discussed.

PACS numbers: 62.30.+d, 03.40.Kf, 67.40.Hf, 72.90.+y

In this Letter we consider the acoustic and elec-
trical properties of porous, fluid-saturated,
fused-glass-bead samples (Ridgefield Sandstone)
which have the unusual property that they support

two distinct longitudinal acoustic modes. ' The
class of porous materials being considered is
characterized by the unique topological property
that the fluid and solid components each forms its

1840 Oc 1982 The American Physical Society


