
VOLUME 49, NUMBER 25 PHYSICAL REVIEW LETTERS 20 DECEMBER 1982

Germany.
'D. Moncton, P. Stephens, R. Birgeneau, P. Horn,

and G. Brown, Phys. Rev. Lett. 46, 1533 (1981).
~S. N. Coppersmith, D. S. Fisher, B. I. Halperin,

P. A. Lee, and W. F. Brinkman, Phys. Rev. Lett. 46,
549 (1981), and Phys. Rev. B 25, 349 (1982).

3B. W. Hockney and J. W. Eastwood, Computer Simu-
l'ation Using I'articles, (McGraw-Hill, New York,
1981), Secs. 8-4.

4D. R. Dion, J. A. Barker, and R. P. Merrill, Chem.

Phys. Lett. 57, 298 (1978).
5P. Dutta and S. K. Sinha, Phys. Bev. Lett. 47, 50

(1981).
6Y. Imry, Crit. Bev. Solid State Mater. Sci. 8, 157

(1979).
~D. S. Fisher, private communication.
M. Nielsen, J. Als-Nielsen, J. Bohr, and J. P. Mc-

Tague, Phys. Rev. Lett. 47, 582 (1981).
D. A. Huse and M. K. Fisher, Phys. Rev. Lett. 49,

793 (1982).

Phason Dynamics of Incommensurate Crystals

R. Zeyher and W. Finger
Max -Planck -Institut fur Festkorpe~forschung, D-7000 Stuttgart 80, Federal Republic of Germany

(Received 26 July 1982)

It is shown that phase modulations (phasons) of the order parameters of incommen-
surate lattices are always diffusive at sufficiently large wavelengths A.. In general there
is a crossover from diffusive behavior for A. » A to propagating behavior for A, «A
where A is a mean free path due to nonlinear interactions. The present results explain
why light- and neutron-scattering experiments probe different dynamical behavior of
phasons.

PACS numbers: 63.10.+a, 05.40.+j, 63.70.+h

In an incommensurably modulated crystal the
equilibrium positions of the atoms are modulated
with a wavelength which is, at least in one direc-
tion, incommensurate with the underlying basic
structure. ' Examples include quasi one- and two-
dimensional metals (for instance NbSe, ) as well
as insulating materials [for instance BaMnF,
(Ref. 2) and biphenyl'].

An interesting property of incommensurate
crystals is the invariance of the free energy with
respect to changes in the relative position of
modulation and basic structure. These changes
are generated by space-independent shifts of the
phase of the order parameter which describes
the modulation. ' This invariance is expected to
hold true as long as the modulation can be de-
scribed by analytic functions. ' The existence of
an. associated collective mode, the phason, with
zero excitation energy follows immediately.

It has generally been argued that the phase in-

!
dependence of the free energy implies the exis-

tence of a gapless branch of propagating phase
modulations (phasons) with a linear dispersion
in the long-wavelength limit. ' This prediction
seems to agree with inelastic neutron-scattering
experiments in biphenyl' which showed the exis-
tence of propagating phase fluctuations. However,
light-scattering experiments in BaMnF, (Ref. 2)
found evidence that phase fluctuations are purely
diffusive, giving rise to a central peak in the
spectrum of scattered light with width Dq'. The
latter result was interpreted in terms of a time-
dependent Ginzburg-Landau theory which has
been developed for charge-density-wave sys-
tems. '6

It is the purpose of this Letter to demonstrate
that both the propagating and the diffusive re-
gimes of phase fluctuations follow quite naturally
and for general reasons from the nature of the
incommensurate state once the nonlinearities in
the Hamiltonian are properly taken into account.

We start from the general form of the Hamil-
tonian for an anharmonic lattice,

C~'~(-k„j„.. . ; -k„j,)A(k„j,) .. &(k„j,) .

A(k, j) denotes the normal coordinates, j is a branch index, and k is a wave vector within the first
Brillouin zone of the basic structure. Ag, j) denotes the time derivative of &$,j) and 4' ' are the ex-
pansion coefficients of the adiabatic potential.
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and

~' =E„,"1&A(.k., j)& I',

II(q, z)

=~- ~qf, P(q)1(z -qr. q)- qi'P(q)~. (5)

x(q) is the static susceptibility x(q, z =0). &AIBA
denotes Mori's scalar product of the two dynam-

I

We assume that the lattice transforms from the
normal phase at high temperatures to an incom-
mensurate phase at a temperature T, and is in-
commensurate below T, . This means that the
expectation value of all normal coordinates is
zero for T & T, and nonzero for some coordinates
for T & T, . In the simplest case the static modu-
lation is caused by one primary wave vector k,
so that the expectation values (A(nk „j)) are non-
zero for T & T, where n is an integer.

It is convenient to introduce the fluctuations A
around the equilibrium positions of the incom-
mensurate phase, i.e., A(k, j) =A(k, j) —(A(k, j)).
Elimination of A in favor of A in Eq. (1) yields
an expression for H in the incommensurate phase.
It has the same form as the expression in Eq. (1)
if A and 4~'~ are replaced by A and 4~" ~, where
4 "' are temperature-dependent expansion coeffi-
cients related to the coefficients 4 '

by a simple
recursion formula.

Let us introduce new dynamical variables P(q )

by means of

P(q) =Q„, in(A(nko, j))A(nko+q, j) . (2)

P(q) describes a modulation with wave vector q
of the phase of the order parameter in a linear
approximation. ' We prefer to use P(q) instead
of the phase itself because P(q) is connected with
the original dynamical variables by a linear trans-
formation which simplifies the dynamics greatly.
The dynamical susceptibility x(q, z) associated
with P(q) satisfies the following equation':

I.
z'- &'/X(q) -zll(q, z)) X(q, z) =-&'

ical variables A and K L is the Liouville opera-
tor and 0 projects out the components parallel
to P(q) and L,P(q).

The excitations of the system are determined by
the poles of x(q, z) in the complex z plane. The
second term in the square brackets of Eq. (3)
is equal to the square of the oscillation frequency
of phase modulations in the absence of irreversi-
ble processes. This term can be obtained from
free-energy considerations. II(q, z) is a complex
self -energy. Its real part describes a frequency-
dependent shift of the oscillation frequency, its
imaginary part the damping. In the following we
are interested in the low-frequency, long-wave-
length behavior of the phase dynamics. It is
therefore sufficient to consider the leading terms
of x(q) and II(q, z) for small q and z.

The inverse of x(q) is given by a second func-
tional derivative of the free energy F[P):

~'F(P]
m (q) m +(q), ,

F[P] depends only on the single normal coordi-
nate P(q). It can be obtained from the free en-
ergy F[A],' which is a functional of the normal
coordinates A(nk, +q, j), by summing exp(-F[A)/
kBT) over all variables except P(q). This, in
general, is a very difficult problem. We there-
fore restrict ourselves in this Letter to a mean-
field approximation, i.e., we replace F[P]by
F[A], putting

A(nk, +q, j) =-~nP(q)(A(nk„j)) */~'. (7)

Equation (7) is obtained from Eq. (2) by inversion.
It gives the mean value of A for a given value of
P provided the normal coordinates other than P
have zero values. Thus fluctuations in the nor-
mal coordinates other than P are neglected in
this approximation.

For q=o we have the following expansion for
F[P].

F[P)=Z.=.F'"'P',
with P =P(0). Within the above approximation the
coefficient E '~ is given by

F~2l = ——,p p f~ "~(n,j„.. . , n,j,)h(n, ko+. . . + n, k,)(n,n, +n,n, +. . . + n, ,n, )Q2
tl] J] ~ lI p +

x (A(n, k„j,)) ~ ~ ~ (A(n, k„j „)).
f ' is the Taylor expansion coefficient of F[A] of vth order Since thi.s coefficient refers to the un-
modulated structure it obeys the quasimomentum selection rule which has been written separately by
means of the Kronecker function d. E(k) is equal to 1 if k is a reciprocal-lattice vector and zero
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otherwise. By exploitation of the Kronecker function, Eq. (9) can be rewritten as

j&')(n, j„.. . , n, j„)
0 nl~l ~ ~ ~ nv~v

(10)

Let us consider the following fluctuation n around
(A(nk „j)):

A(nko, j) =(n /2A') (A(nko, j)) o. . (11)

Inserting Eq. (11) into E[A], one recognizes that
the right-hand side of Eq. (10) represents just
the first-order change in E[A] due to n. How-

ever, this change has to vanish because E is
stationary with respect to all first-order changes
so that I" ' =0. Consequently we can write with-
out loss of generality

3 2 2

x '(q) =E (12)

„has the meaning of a phase velocity for phase
modulations propagating along the direction & in
the absence of irreversible processes; see Eq.
(3). The above derivation shows that the free
energy does not depend on the linearized phase
variable P(0) up to second order in P(0) [the high-

! er orders in P(0) do not vanish in general, as an
extension of the above argument shows].

For sufficiently long wavelengths and low fre-
quencies the dynamics of the phase modulations
is determined by the hydrodynamic limit of II(q,
z), i.e., by lim, , lim~, II(q, z) = -iy where y
is positive. Strictly speaking the existence of
this limit is only guaranteed if all hydrodynamic
variables (i.e. , also the energy and momentum
density and three displacement variables) are
considered explicitly. To keep things simple we
have omitted the other hydrodynamic variables
from our discussion which is a good approxima-
tion if we are only interested in the leading con-
tribution to y.

The basic quantity in y is the fluctuating force
QL'P(0) which acts on the q=0 phase modulation.
Using Eq. (2) and the Hamiltonian of Eq. (1) re-
written in terms of the fluctuating variables A(k,
j) we obtain from cubic anharmonicity

QL'P(0) = Z
k2, g2, k3, j3

n, j

(in/2) (A(nko, j))C ~(-nko, j; -k2, j2; -k3, j,)A(k„j,)A(k„j,) . (13)

In calculating Eq. (13) we used the fact that there
is no term - 4 ': It can be shown that P(0) is an
eigenfunction of 4 &' so that I.'P(0) is proportion-
al to P(0) and QL'P(0) is therefore zero. Equa-
tion (13) shows that the fluctuating forces acting
on P(0) vanish in the harmonic limit but are non-
zero if anharmonicity is taken into account. Phys-
ically this means that there are fluctuating forces
acting on the order parameter if its phase is
shifted rigidly. The divergence of y for q -0
tells us that the reversible part of the work
necessary to shift the phase is zero. However,
the irreversible part associated with this phase
shift is nonzero, i.e., a change in the phase is
associated with friction. This behavior is quite

different from the case of acoustical phonons in
the limit q-0: There the corresponding eigen-
vectors describe rigid translations of the whole
solid and experience no friction, so that the
fluctuating forces vanish for q -0.

The constant y can be evaluated by inserting
Eq. (13) into Eq. (5) and by approximating the
intermediate states by the eigenfunctions of 4 ".
Since the resulting expressions are complicated
we will limit ourselves to a simple case: We
assume that the intermediate states can be ap-
proximated by the phonons of the high-tempera-
ture phase (i.e. , the reconstruction of the excita-
tion spectrum near q -+k, can be neglected). The
expression for y becomes in the classical limit

ly 3 1I
klgl, k2g2

xh(( (k„j,) —~(k„j,)), (14)
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2pE
S(q, (u)- ~'+(Z c-'q.'/y)' ' (16)

Physically one obtains the following picture: If
fluctuations in the phase of the order parameter
with wavelengths larger than A = 2c„/y are in-
duced the order parameter will reach its equilib-
rium value again via diffusion processes mhich

are due to internal anharmonic interactions.
(b) c„q„»y/2. The position of the poles is

then approximately at &u = -iy/2 + (P c 'q ') '~'.

This means that the pha. se responds to perturba-
tions with wavelengths smaller than A by carry-
ing out damped oscillations around its equilib-
rium va,lue.

The transition between diffusive and oscillating
response occurs for q-1/A. If we take for c„
typical values for sound velocities and the above
estimate for y, A is of the order of 100 A. Thus
we would expect that light scattering experiments
would probe mainly the diffusive regime whereas
inelastic neutron scattering experiments would

probe mainly the propagating regime.
Finally we would like to make a comment on the

relationship between a continuous broken sym-
metry and Goldstone modes. " Usually it is said
that a continuous symmetry is broken if the
ground state of the system (or more generally the
density matrix) is not invariant under the cor-
responding symmetry operations whereas the

It shows that y is indeed nonzero for T w0 and
that only difference processes contribute.
varies continuously with temperature near T,.
The critical temperature dependence due to ~'
in the prefactor is canceled out by the tempera-
ture dependence of the two expectation values of
A. If the plane-wave limit for the order param-
eter applies, expression (14) is identical with the
z —0 limit of the self-energy of the soft phonon.
We therefore expect that y is of the order of 1
cm ' for most incommensurate crystals at tem-
peratures of order T,.

In the classical limit Eq. (3) yields the following
dynamic structure factor:

2Tyb,S(4~)222222 ~

((u -P c q ) +(uy

The poles of the denominator of S are at ~ =-,'[-iy
+(-y'+4+„c 'q ')' ']. One therefore has to dis-
tinguish between two cases:

(a) c~q «y/2. The position of the poles is
then approximately given by -iy and -iP„c„'q„'/y.
An analysis of Eq. (15) shows that the relaxation
pole -iy has only a small meight in 8 so that

total Hamiltonian H is. This implies that the
generators of those symmetry operations which
restore the full symmetry commute with H a.nd

give rise to conservation laws. For instance the
averaged one-particle density in a solid breaks
the continuous translational symmetry. The total
momentum operator P generates infinitesimal
rigid translations which restore the full transla-
tional symmetry. P commutes with H and is
therefore a conserved quantity. The continuous
broken symmetry and the conservation of the
toral momentum are interrelated and as a result
there exist propagating sound waves. In our
case the generator of infinitesimal shifts in the
phase of the order parameter does not commute
with H. This follows for instance from the explic-
it dependence of H on the phase P(0) once the
anharmonicity is taken into account. As a result
a continuous symmetry of the free energy but not
of the Hamiltonian is broken. Phasons are there-
fore not propagating Goldstone modes but are al-
ways diffusive for sufficiently long wavelengths.

We think that the general conclusions outlined
above are in agreement with the available experi-
mental data. Phasons have been seen as propagat-
ing excitations in biphenyl in inelastic neutron-
scattering experiments where the momentum
transfer is large. On the other hand many at-
tempts to observe phasons in the form of Bril-
louin doublets by light-scattering experiments
mere unsuccessful. " Recent quasielastic light-
scattering data in the incommensurate phase of
BaMnF, (Ref. 2) show instead a central peak (dif-
ferent from the Rayleigh peak caused by entropy
fluctuations) with a q dependence as predicted by
Eq. (16). Taking the observed sound velocity of

transverse phonons as a first approximation for
c we find that the measured widths of the cen-
tral peak (Fig. 6 of Ref. 2) correspond to the
values y-1.7 and 2.5 cm ', which are in the
same range as the value estimated above.
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It is shown here that superfluids (such as 3He-A and Bose-condensed spin-polarized
hydrogen) whose order parameters transform like an angular momentum e.igenstate

~ j,m & 0) will have similar superfluidity —similar Josephson and vortioity equations.
In particular, if spin-polarized hydrogen condenses into the 5 state as currently be-
lieved, it will not have a stable superflow. Nonuniform magnetic fields can also induce
in it a persistent current similar to that of He-A.

PACS numbers: 67.40.-w, 67.50.Fi, 05.30.Jp

The recent stabilization of atomic spin-polarized
hydrogen' (SPH) has generated much hope in the
observation of Bose-Einstein condensation in this
system. A hydrogen (H) atom can be regarded as
a boson because it contains two fermions. Re-
cently, Siggia and Ruckenstein' pointed out that
SPH, when condensed, wil. l behave like a spin-&
Bose superfluid. This is because at low tempera-
tures, only the lowest two hyperfine states, usual-
ly refered to as a and b, are important. They
correspond to the alignment and misalignment of
the proton spin with the external field, modified
by the hyperfine interaction. The electron spin is
basically held fixed by the external field because
it has a magnetic moment (p, , ) 10' times larger
than the proton's (p~). More recently, Statt and

Berlinsky' pointed out that because of molecular
recombination effects, condensation is mostly
likely to occur in the b state.

The purpose of this paper is to show that, no
matter which hyperfine state SPH condenses into,
the flow properties of this prospective S = 2 Bose
superfluid will be very similar to those of 'He-A,
aP-wave BCS superfluid well known for its pe-
culiar superft. uidity. In fact, we shall see that all
superft. uids whose order parameter transforms
like an angul. ar momentum eigenstate

~j,mt 0)
will. have similar flow properties.

'He-A consists of Cooper pairs which are orbit-
al angular momentum eigenstates ~L =1,L l=1)

along a certain direction l. The pair wave func-
tion is I'»(p)o:P p, where P =y, +i@„P, $,=0,
l =P, &&@» and p is the relative displacement of
the helium atoms in the pair. The triad structure
of the orbital order parameter p is the cause of
the peculiar flow properties of 'He-A. For ex-
ample, in simply connected containers (because
of the surface boundary condition on l), 'He-A

wil. l carry a persistent current whose magnitude
is of the order of a few vortices. ' On the other
hand, superflows (with larger winding numbers)
in multiply connected containers are not intrinsic-
ally stable. ' All these are very different from
the behavior of the more familiar superfluids
such as 'He and superconductors, whose order
parameters are scalars.

That SPH can be treated as a S =2 Bose gas can
be formulated as follows. The Hamiltonian of
SPH is H=T+Z+t/, where T is the kinetic ener-
gy, V is the interaction between the H atoms,
and Z is the sum of the Zeeman energy and the
hyperfine interaction (g),

Z= fd Xg [2(p, 0 —ppT)'H „)+ g1 'V]17.

Here& w (o) is the proton (el.ectron) Pauli matrix,
H, „,(r) is the external field, and rt = (q&, ) is the
hydrogen Bose operator with el.ectron (proton)
spin index p, (i). It is straightforward to show
that the matrix U = exp[i7 &&o &~/4], with e
= cot '[(p~+ p., )8,„,/g] and n =II,„t, diagonalizes
Z locally, so that

Z = fd'x q U [-,' (p, o p, ~) ~ H „,+—-,' g (~ ~ n ) (o ~ n ) ] Url,
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