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Since

(Aap)? = (Amu)? =E(<b(—t)—%p—'ﬁ~)—)2) -E(p, (1))E(p-(2))

[dx o t)<an t)> (dx olx, B.Sx t)>’ (23)

we can conclude that

(ap)?* = (amv)® +(Amu)®. (24)
In particular,

Ap = Amu. (25)

Namely, the Heisenberg position-momentum uncertainty relations

[Co(e), x29(8)) = (e ), 2 9(2)) 212 X [Cy(2), p2ult)) = Cule), pe))2] V2 2 /2 (26)
can be traced back to the position—~osmotic velocity uncertainty relation

. a2 f(28) =p () \N/2 .k \

LB = (e 122 p((PAL 2L Y7 ] (21

for the stochastic process ¢(¢) associated with the wave function y(x, ¢) in the sense of Nelson.

As a final physical remark, we wish to observe that out of the two terms of the decomposition (24) of
the root mean square deviation of the quantum-mechanical momentum there is a part due to the cur-
rent velocity and a part due to the osmotic velocity; it is just the osmotic term that forces the position-
momentum uncertainty.
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A new stochastic method for the numerical study of lattice fermions is presented. Its
efficiency is demonstrated on a field-theoretic model in four dimensions with coupled
boson and fermion degrees of freedom. The exact fermion propagator is calculated and
agrees very accurately with the numerical results of the stochastic procedure on finite
lattices of 104 and 83x 16 sites, respectively. The contribution of fermionic vacuum po-
larization to mass renormalization is evaluated with precision. The method is directly
applicable to quantum chromodynamics.

PACS numbers: 11.15.Ha, 02.70.+d

During the last twelve months we have witnessed cations in quantum field theories, condensed mat-

considerable effort to develop Monte Carlo meth- ter physics, and nuclear physics.

ods for the numerical study of quantum systems Previous techniques'™® were slow when a very
with fermionic degrees of freedom. This out- large number of fermionic degrees of freedom
standing problem is of great importance for appli- were involved, since the computational time re-
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quired for a Monte Carlo sweep through the lat-
tice was always proportional to the square of the
crystal volume,'® or even worse.

Recently, this problem was solved by Hirsch
et al. in one space and one time dimension.!!
They follow the evolution of fermion world lines
along the Euclidean time direction with an update
time independent of the lattice volume. The meth-
od is fast and efficient in applications. The gen-
eralization of this ingenious idea to higher di-
mensions is desirable.

I will follow here the more standard strategy
and work directly with a new effective action of
the boson fields when the fermionic degrees of
freedom are integrated out. Though the effective
action becomes nonlocal in the presence of the
fermion determinant, the new procedure maintains
the efficiency of the standard Monte Carlo tech-
nique where the update time on a site is indepen-
dent of the lattice volume. The method is ap-
plicable in any number of dimensions.

For a general presentation, I will consider now
the Euclidean action

S=8,(U)+ Zij%M,-j (U)djj (1)

in four dimensions. It describes the interaction
of a boson field U; with a fermion field ¥; , and
the subscripts on the fields refer to the lattice
points. Spin and internal symmetry indices are
suppressed, for simplicity. The matrix M; (U)
designates both kinetic and mass terms for the
fermion field, and couplings to the boson field.
S,(U) describes the pure bosonic part of the
Euclidean action. It is important to note that
most of the interesting models in quantum field
theory, condensed matter physics, and nuclear
physics can be brought to a bilinear form in the
fermion fields.

The fermion Green’s functions can be calculated
by inserting sources into the path integral

Z(m,m)
= [DT DY DU expl-S+ X, @, +T,1,)]. (2)

By taking the functional derivatives and integrat-
ing out the Grassman variables, the fermion cor-
relation function can be written as

<d)id)j>=

52 -
m lnz(n’n)‘ﬁ:nzo

=Z ' [DUM,;'(U) expl- S )],  (3)

where Z is the partition function (normalization
integral) of the boson-fermion system. The ef-
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fective action is given by
expl=Se¢(U)]=detlM (U)] expl-S, ()],  (4)

and I assume, for simplicity only, that the fer-
mion determinant has positive sign.

I apply now the Metropolis Monte Carlo method
to the evaluation of the functional integral in Eq.
(3). Other Euclidean Green’s functions can be
treated similarly.

It was shown by Scalapino and Sugar,? and by
Fucito ef al.,' that a local change U~ U + 68U im-
plies

eXp[— Seff (U + GU)]
exp| -S4 (V)]

= det[1+M " Y(U)sM (U)]

y expl - S,(U +8U)]
expl-S,(U)]

With local boson-fermion coupling the nontrivial
change 8M in the fermion matrix is restricted to
the neighborhood of the updated lattice site. Con-
sequently, we need only a few inverse elements
of the large matrix M in each Metropolis step.

At that point I depart from standard procedures.
Since the results of a Monte Carlo calculation are
always subject to some statistical inaccuracy, it
is reasonable to evaluate the decision-making
step stochastically. The error analysis becomes
subtle,'? but I am not concerned with it here. I
will calculate the inverse matrix elements of M
by some modification of a stochastic method
which was first suggested by J. von Neumann and
S. M. Ulam, but never published by them.'® It is
a very efficient method for the approximate sum-
mation of the von Neumann series defined by the
inverse of the operator M.

Assume that the inverse of a matrix M of order
m is desired and let H=I-M, where I is the unit
matrix. For the method to be applicable, it is
necessary and sufficient that the eigenvalues of
the matrix H,;=|H ;| are less than 1 in absolute
value. Note that the above condition can always
be arranged by proper normalization. The ma-
trix elements (M ~'),; are given by the solutions
of the linear system of equations Mx =b, with unit
driving vectors on the right-hand side. This equa-
tion is equivalent to (2/mM "Mx =(2/WM b, where
i is the first norm of the matrix M 'M. The driv-
ing vector (2/uM Td may be decomposed into a
linear combination of unit vectors and, with the
replacement M —~ (2/)M ™M, the method applies
even in the worst case.

I decompose the matrix element H,, into H;,
=F;,R;, with the restriction that P, >0 and

(5)
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7., P,;, <1for all values of i. Consider a ran-
dom walk on the domain of integers 1,2,...,m.
The walk begins at some selected point i and pro-
ceeds from point to point with the transition prob-
abilities P;,. The walk stops after % ’steps at
some point s, with the stop probability Psk =1
- \;":1Pskr . When the walk stops, a score S;;
is registered for the elements in the ith row of
the inverse matrix. It is defined by the product

of the residues R along the trajectory i—s,

Sy Sp+ 1.
-S,—~... =8, =j divided by the stop probability
0 ifs,#j
s,.,.={ (6)
Riisslsz. : 'Rsk_lej-l if Sy =j.

I will prove that the expectation value of the
random variable S;; is (M "');;. Indeed, the prob-
ability of a walk to follow some trajectory i—j
and to stop atj is P(i=j)P;=P; P o Py,
XP;. The expected score is given by the sum
over all trajectories from i to j :

Sip= 2 PE~jP;S;;= 25 Pi~RE~7), (7)

17 17

where R(i—j) is the product of the residues along
the trajectory. Since P;;R;; =H;;, Eq. (7) is
recognized as the von Neumann series expansion
for M"'=(I-H)™*. The term 3;; in the von Neu-
mann series is generated by walks which stop im-
mediately.

It is easy to prove that the variance 0;;% of the
random variable S;; is given by

0;2=@7Y);; P =M™, 2,

where @ =(I-K) ' withK;; =H ;R ;. The variance
of S;; is finite, provided the von Neumann series
for @ =(I -K) ! exists.

The statistical error on (M™');; is given by 0;;/
VN for N walks which all begin at point i. For a
given statistical accuracy in the decision-making
step of the Metropolis procedure, the required
number of walks does not depend on the size of
the matrix. Therefore, the update time in this
stochastic procedure is independent of the lattice
volume. My tests involved matrices of the order
of 10, or larger.

I will now modify the von Neumann-Ulam algo-
rithm for better efficiency in fermionic Monte
Carlo procedures. It is easy to realize that dur-
ing a walk which started at point 7, one can regis-
ter the product of residues at each pass through
the point j. I define a new random variable S;
as the sum of the products of residues, adding a

new term to the score at each pass through the
point j. The stop probabilities are eliminated
from the random variable S;;, but they still gov-
ern the average length of a walk.

It is straightforward to show that (S;;)=(S;,)
when the stop probability P; is positive. I have
also proved'? that the expectation value (§,,) is
equal to (M~1);; when the stop probability P
vanishes. The original method does not apply in
this case.

In order to compare efficiencies, I choose a
simple case when all R;;=1 and P; is positive.
A necessary and sufficient condition'? for the
variance of the random variable S;; to be smaller
than 0,2 is P; <e;/(2-e;), where e; designates
the escape probability from the point j. In prac-
tice, this condition is enforced by the nature of
the fermion problem, and the modified method is
much more efficient.

In the special case when all stop probabilities
vanish, one has to stop by fiat. Some bias is in-
troduced then, since the von Neumann series is
truncated after a finite number of terms. The
modification described above is probably known
to some experts on stochastic methods and the
special case when the random walk is stopped by
fiat appears in the work of Bakhvalov.'*

I tested my stochastic fermion method on a
four-dimensional boson-fermion model which was
first suggested by Scalapino and Sugar.?” The
fermion matrix M in Eq. (1) is specified now as

iis (8)
where U, and ¥, are a scalar boson field and a
spinless fermion field, respectively. A ;; defines
the Laplacian operator on the lattice, m is the
bare fermion mass in lattice spacing units, and
g designates the dimensional boson-fermion

coupling constant. The functional integral is cal-
culable analytically in this model,? and one finds

D(i-j)=@,¥p=(-a+m2+38);;" . (9)

The fermion-boson interaction generates a mass
term dynamically, and the renormalized fermion
mass is given by m, = (m?+3g)"/2.

Some results of my calculations are presented
in Fig. 1. The complete fermion mass was gen-
erated dynamically with the choice m =0. The
agreement of the numerical points with the exact
analytic form is very satisfactory (the statistical
errors are practically not visible on the logarith-
mic plot). The quenched approximation,'®~ !’
where one neglects the fermionic vacuum polari-
zation effects from the fermion determinant in

M;;==A;; +(m®+gU 2)0
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FIG. 1. Some numerical results on the fermion cor-
relation function compared with exact calculations.
D(i—3) is depicted for a lattice of 83x 16 sites with
periodic boundary conditions and coupling constant
g=2.6a"? (in the actual calculations the lattice spacing
a was set to unity). The free fermion propagator, with
renormalized mass m, 2= 1.3a"? on the same lattice
size, is represented by the solid line. Results are
also presented for a lattice of 10! sites with m, 2
=0.25a"% The dashed line is the fit of a free fermion
propagator of mass m, *= 1.02a~? to the results of the
quenched approximation on the 8%x 16 periodic lattice
with g=2.6a"2 and m = 0. The continuous curves for
the exact propagators are drawn to guide the eye.

the effective action, is also presented in Fig. 1.
The contribution of the fermion loops is clearly
seen and accurately calculated: m2/m 2=0.78.

The speed and efficiency of my stochastic meth-
od is very promising. It took only about 3 hon a
VAX 11/780 to calculate the complete fermion
propagator on the 83X 16 lattice, with relative
errors which are only a few percent even for a
separation of eight links along the fourth direc-
tion. Details of the numerical results will be
published elsewhere.'?

Some work is in progress now on the numerical
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solution of quantum chromodynamics,'® and the
Hubbard model in two and three spatial dimen-
sions.'® I am also working on further theoretical
improvements in the stochastic method.

I would like to acknowledge very useful discus-
sions with J. E. Hirsch, K. Johnson, J. Richard-
son, R. L. Sugar, D. Toussaint, and F. Wilczek.
I am grateful for the kind hospitality extended to
me at the Institute for Theoretical Physics in
Santa Barbara. This research was supported in
part by the National Science Foundation under
Grant No. PHY77-27084.
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