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A simple inequality relating the root mean square deviations of position and osmotic
velocity for a diffusion process is presented and, in the framework of Nelson’s stochastic
mechanics, is related to the Heisenberg position-momentum uncertainty relations.
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In this paper we provide a simple derivation of
the Heisenberg position-momentum uncertainty
relations in the framework of Nelson’s stochastic
mechanics.! In such a scheme, which associates
a diffusion process to every given quantum state,
we show that the uncertainty relations come from
a purely kinematical fact about classical diffu-
sion, which can be traced back to the nondiffer-
entiability of the typical sample path.

We refer the reader to Ref. 2 for a deep and
extensive review of the interplay between quan-
tum mechanics and the theory of stochastic proc-
esses. Here we just give a simple introduction
of the probabilistic terms used in our discussion.

Consider a particle of mass m, whose motion
on the real line is described by the stochastic dif-
ferential equation

dq(t)=b.(q(t), t )dt +dw () (dt>0). (1)

Equation (1) describes a random disturbance
dw(t) [supposed here to be Gaussian, with expec-
tation E(dw(¢)) =0 and variance E{dw(¢)?)=2vdt,
where v is called the diffusion coefficient] super-
imposed on the otherwise deterministic evolution
determined by the velocity field b .(x, ¢). We re-
call, first of all, that what would seem the most
natural definition of momentum to be associated
with the random motion of the particle, namely
mdq/dt, is in fact incorrect, because of the fact

that dw = O(dt /2) prevents the existence of the
relevant limit. Two alternative definitions were
proposed in Ref. 1: The first (i) is

pt)=mv (q(t),t), (2)
where the mean forward velocity field v,(x, ) is
defined by

v,(x,¢)= lim E<l(_t£f)_"q.(_ﬂ ) (3)

At ot At o £)=x

The operational meaning of the conditional ex-
pectation E( « + +) appearing in the definition is
clear: v,(x,¢) is the mean slope with which
those sample paths that at time ¢ are in x leave
x. It is not difficult to check that

v(x,t)=b,(x,1). (4)
The second definition (ii) is
p_(t)=mv_(q(t),1), (5)

where the mean backward velocity field v_(x, ¢)
is defined by

(q(t) — gt -at)
At

v_(x,t)= lim E

At =0t

qm=,,>' (6)

Operationally, v_(x, t) is the mean slope with
which those sample paths that at time ¢ are in x
enter x.

Definitions (i) and (ii), though in principle dis-
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tinct, are not completely independent, They are

indeed related to the probability density p(x, ¢) of
the position of the particle by the kinematical re-
lation

, _ _gy L 2k, t)
vlx,t)=v_(x,t) 2Vp( .

x,t) o (7

2 2

E([q(t) —E(q(t))]["’-(” =p 1) _E<1>-(t> -p4{t)

Schwarz’s inequality then implies

Ag ASp = mvy, (10)

where Ag and A0p are, respectively, the root
mean square deviations of the random variables
q(¢) and 6p(¢) =[p(¢) =p_(t)]/2. Our main point
is that inequality (10) is not merely an analog®

to the Heisenberg position-momentum uncertainty
relations but, indeed, in the framework of Nel-
son’s stochastic mechanics, implies and, we
hope, clarifies them.

To a quantum state of a particle of mass m
described by a normalized wave function ¢(x, ¢)
=exp| R(x, t) +i S(x, t) /1] stochastic mechanics
associates a stochastic process with diffusion
coefficient

v="n/2m, (11)
whose probability density is given by
ple, t) =l ylx, ) |2, (12)
and whose current velocity is given by
3
olx, 1) = LD row, 1) L3S, 1) (g

2 m X |

E(P+(t))=E(p_(t))=[p(x’ t)B_S(g;,_t_)

and, similarly,

2S(c, 1) OR(x, 1)

Ep A1) = (y, p7) + 20 [ ple, 1) == o

Namely,
E(p &(t) +p 2(2)) /2=Cy(t), p*u(t)).

We have, therefore,

Multiplying both sides of (7) by mp and integrat-
ing over x, we obtain

E(p(t)=E{p_(2)). (8)

Namely, the two random variables p,(¢) have the
same expectation, Multiplying both sides of (7)
by mpx, integrating over x, and using (8), we
obtain

)])=mo- (9)

|Because of (11) and (12), for the process g(t)
associated with the wave function ¢(x, ¢), Eq. (7)
specializes to the following expression for the
osmotic velocity:

v.x,t)-v.(x,t) 7 8R(x,t)
2 “m o x :

ulx, t) = (14)

Inequality (10) implies then that the root mean
square deviations of the random variables ¢(¢)

and u(q(t), t) satisfy
Aq Amuzh/2. (15)

In order to connect this inequality with the posi-
tion-momentum uncertainty relations, we observe
that, because of (12), we have in fact

aq={E([q(t) - E¢q()) ])}
=[Cule), x29(8)) = Cle), x ul2))2] V2.,

Next, we observe that the relevant expecta{tion of
the momentum operator p =(%/¢)8/8x in

ap=[u(t), p2ue)) = Cg(t), py(t) ?]72

can be easily read from the mean stochastic
velocities of the process ¢(¢). We have, indeed,

(16)

17

ap =[ut), p2u(t)) - <¢(t),p¢(t)>2]1/z:<

Equation (21) is to be compared with

o (0522

182

dx = Cy(8), pult)), (18)

(20)

E(p A1) =1E(@Lt)]? +E(p_2(t))—[E(P_(t))]2 >1/2 (21)
2 9 .

(22)
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Since

(Aap)? = (Amu)? =E(<b(—t)—%p—'ﬁ~)—)2) -E(p, (1))E(p-(2))

[dx o t)<an t)> (dx olx, B.Sx t)>’ (23)

we can conclude that

(ap)?* = (amv)® +(Amu)®. (24)
In particular,

Ap = Amu. (25)

Namely, the Heisenberg position-momentum uncertainty relations

[Co(e), x29(8)) = (e ), 2 9(2)) 212 X [Cy(2), p2ult)) = Cule), pe))2] V2 2 /2 (26)
can be traced back to the position—~osmotic velocity uncertainty relation

. a2 f(28) =p () \N/2 .k \

LB = (e 122 p((PAL 2L Y7 ] (21

for the stochastic process ¢(¢) associated with the wave function y(x, ¢) in the sense of Nelson.

As a final physical remark, we wish to observe that out of the two terms of the decomposition (24) of
the root mean square deviation of the quantum-mechanical momentum there is a part due to the cur-
rent velocity and a part due to the osmotic velocity; it is just the osmotic term that forces the position-
momentum uncertainty.
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A new stochastic method for the numerical study of lattice fermions is presented. Its
efficiency is demonstrated on a field-theoretic model in four dimensions with coupled
boson and fermion degrees of freedom. The exact fermion propagator is calculated and
agrees very accurately with the numerical results of the stochastic procedure on finite
lattices of 104 and 83x 16 sites, respectively. The contribution of fermionic vacuum po-
larization to mass renormalization is evaluated with precision. The method is directly
applicable to quantum chromodynamics.
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During the last twelve months we have witnessed cations in quantum field theories, condensed mat-

considerable effort to develop Monte Carlo meth- ter physics, and nuclear physics.

ods for the numerical study of quantum systems Previous techniques'™® were slow when a very
with fermionic degrees of freedom. This out- large number of fermionic degrees of freedom
standing problem is of great importance for appli- were involved, since the computational time re-
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