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Traversal Time for Tunneling
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One of several contradictory existing results for the time a tunneling particle interacts
with its barrier is confirmed, by considering tunneling through a time-modulated barrier.
At low modulation frequencies the traversing particle sees a static barrier. At high fre-
quencies the particle tunnels through the time-averaged potential, but can do it inelastical-
ly, losing or gaining modulation quanta. The transition between the two regimes yields
fdx[m/2(V —E)] for the traversal time.

PACS numbers: 73.40.Gk, 74.50.+ r

In 1932 MacColl. ' pointed out that tunneling is
not only characterized by a tunnel. ing rate, but
al.so by a time during which the tunneling particle
is actually traversing the barrier. There are
many later contradictory results, and we can cite
only a few. ' " The traversal. time is of particular
significance in many-body problems reduced to
approximate single-particle problems, where we
ask about the ability of some degrees of freedom
to adjust to the progress of the tunneling. One of
these problems, tunneling in the presence of fric-
tion, is of interest in Josephson junction cir-
cuits, ""and wi1.l be discussed later. Another
is the tunneling of an electron out of a metal,
through an insul. ator, and the ability of the image
charge on the metal surface to spread out as the
electron departs from the surface. " The effec-
tive image force al.so depends on the extent to
which contributions to the diel. ectric constant of
the insulator can respond within the traversal
time. '

We wil. l substantiate one of several. existing ex-
pressions for traversal time by studying the tun-
neling through a time-dependent barrier.

V(x, t) = V,(x)+ V, (x) cosset.

V,(x) is static and V,(x) is the amplitude of a
small. modulation. Particles incident with energy
E, interacting with the perturbation V, (x) cosa&t,
will emit or absorb modulation quanta @~. Our
key point is as follows: If the period in Eq. (1)
is long compared to the time during which the
particle interacts with the barrier, then the parti-
cle sees an effectivel. y static barrier during its
traversal. At frequencies high compared to the
reciprocal traversal. time the particle sees many
cycl.es of the oscill. ation. Thus, the effective bar-
rier is neither larger nor small. er, and the in-
tensities of the transmitted beams differ only be-
cause the particles can absorb or give up modula-
tion quanta. Particles gaining energy tunnel more

easily through the barrier. As the modulation
frequency is varied the crossover between the
two types of behavior occurs when ~~= 1, where
w is the interaction time of a 8 ansmitted particle.
Thus we find an interaction time

~ = f [m/h~(x)]dx

= f '(m/2[V, (x) E] I-'"dx
1

(2)

x, and x, are turning points, m the mass, and
~(x) =(2m[V, (x) -E]}''/h. Equation (2) is valid
in the WEB limit at energies below the barrier
peak. Well above the barrier we obtain v. = f(m/
2[E —V,(x)]]' 'dx. This Letter emphasizes the
limit where there is only a small probability for
tunne 1.ing.

We restrict most of our discussion to a rectan-
gul. ar barrier with height t/'» and width d, centered
at x = 0. With an incident wave function of unit
amplitude and a current j = hk/m, where k
= (2mE)' '/h, the transmission probability for a
static barrier is T = [1+(k,'/4k'z') sinh'N] '.
Here k, = (2m V,)' '/h and « = (k,' —k')' ' is the rate
of exponential decay. For an almost completely
reflecting barrier, hereafter called an opaque
barrier, ~»1, and the transmission probability,
for Ef & Vp is given by

T —(16k2K2/k 4)e -2«

We allude to three different earlier methods,
citing only a few key papers for each. A time de-
lay for a scattering process can be calculated by
foll.owing the peak of a wave packet, via the meth-
od of stationary phase. ' If 4q is the change of the
phase across the barrier, the time found is v ~
=hshcp/BE. For an opaque rectangular barrier,
Hartman' uses this to find v~=2m/hkK. In con-
trast to Eq. (2), this result is independent of the
thickness, and diverges as the incident kinetic
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energy goes to zero. The more general form of
~~, for a slowly varying potential, is al.so inde-
pendent of the detailed shape of the barrier.
There seems little physical. justification, how-

ever, for the identification of incident peaks with
transmitted peaks, particularly in the presence
of the strong deformation'" of a wave packet
transmitted through a barrier.

An approach given by Smith, and advanced by
others, ' yields a time 7, as the ratio of the num-
ber of particl. es under the barrier to the incident
flux. For an opaque rectangular barrier v, =—kk/
&p & This tends to z ero wi th the square root of
the kinetic energy of the incident particles, and
is independent of the thickness of the barrier.
This method does not distinguish between parti-
cles which at the end of their stay in the forbid-
den region have been ref l.ected, and those that
were transmitted. This time is the average dwell
time of a particl. e in the barrier, and is not the
traversal time, if most particl. es are reflected.
A third method" uses the Larmor precession
as a clock to measure traversal. time. A smal. l.

magnetic field is confined to the barrier. Com-
paring the spin orientation of transmitted parti-
cles with the orientation of the incident beam,
Bybachenko' finds the same result for an opaque
rectangular barrier as Smith. One of us has
shown that the notion of a Larmor precession
during tunneling is not correct; a refined ap-
proach again yields the result of Eq. (2)." The
many other earlier results include the statement
that the traversal takes no time.

Results similar to Eq. (2) are anticipated in
Befs. 8-11. Sokolow, Loskutow, and Ternow'
base this on the expectation value of momentum
obtained from the exponentially decaying wave
function, within the barrier. Schnupp criticizes
this, but confirms it by numerical computation.
Leggett" discusses Eq. (2) only for the case
where E is at the minimum of the initial. potential
well, below the ground state of that well. , and
correctly points to the physical. significance of
this "bounce" time, which elsewhere appears
only as a mathematical device. Unfortunately,
at the particular value of the energy in Ref. 10,

D = (4k'/k, ')e '~ exp(-i arctan[(K' —k')/2k K]"Ie

the integral in Eq. (2) diverges. Schulman" gen-
eralizes this formal. "bounce" time expression to
arbitrary energy, and arrives at Eq. (2). In con-
trast to the cited work, we consider an expl. icitly
time-dependent Hamiltonian, with the potential
of Eq. (1). In this part of our discussion V,(x) is
a rectangular barrier, with Vo(x) =Vo, if ~x~ -d/2,
and zero otherwise. The perturbation ampl. itude
V, (x) is constant over the barrier, and zero else-
where. A wave of unit amplitude is incident from
the l.eft.

We proceed by first considering the simpler
Hamiltonian, H =p'/2m+ V, + V, cos~t, spatially
uniform along the whole x axis. If the time-inde-
pendent problem H, =p'/2nz+ V, has H,y E =Ey»
then in the time-dependent ease

iZt iV,
=rp (x) exp — exp — ' Bin~t) .

kw (4)

Equation (4) applies witkin the barrier. There we
have «V„and qe(x) = e' "". We can separate"
g(x, t;E) into components with energies E+nk&u,

=+OO
V

(x i.Z) —e«Kxe-~&&h g Z |e inst (5)hv J'
J„ is a Bessel function. The time modulation"
of the potential gives rise to "sidebands" describ-
ing particles which have absorbed (n )0) or emit-
ted (n (0) modulation quanta. We take V, as a
perturbation, and only include first-order correc-
tions to the time-independent case. For small.
U, /k~, Bessel functions behave as J„~(U,/k~) "i.
Equation (5) shows that the order in V, /A&a cor-
responds to the order of the sidebands. To first
order we obtain, therefore, the first two side-
bands at E+@+. To find the solution for the
oscillating rectangular barrier we match a super-
position of incident and reflected waves, and also
transmitted waves, at the three energies E, E
+kco, to solutions within the barrier. Within the
barrier we have a superposition of two solutions
of Eq. (5), corresponding to each of the three un-
perturbed energies F. , E+@w,. For the transmit-
ted wave, at the frequency Z/k, we recover the
resul. ts of the static barrier, with a coefficient
multiplying e'~' ' ' " given by

(6a)
For the transmitted waves at the frequencies (E/k} + ~ we find, for the coefficients multiplying
exp[ik, x —i(E ~ h&u) t/n J,

D =+D(U, /2hu)e"' ~ "«'(e' ' —]).
& = (m/h~)d is the time it would take a particle with the real velocity v =8~/m to traverse the

(6b)
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barrier, and this is the time Eq. (2) yields for a
rectangular barrier. Its role as a transition
boundary between regimes is suggested by the
final right-hand side factor in Eq. (6b), but will.
be discussed in more detail. To obtain Eq. (6b)
we have, in addition, assumed that A& «E, so
that the wave vectors of the sidebands k, = [2m(E
+ 8'~)]' '/I-=k+ m~/Sk, and assumed ku «V, E,-
so that ~, = v+ m(d)/5)('. The probability of trans-
mission at the sideband energies determined
from Eq. (6b) is

T, =~D, ~'=(V, /2h~)'(e' ' —1)'T, (7)

with T given by Eq. (3). For frequencies smal. l

compared to the reciprocal traversal time, a
particle, during its interaction with the barrier,
sees only a static barrier. The wave function in
the barrier decays with the instantaneous expo-
nential WEB rate z(t) =]2m[V(t) -E]]' '/S. For
smal. l V, this gives K(t) = x —(mv, /5'v) cosset,
where ~ is the static decay constant. The in-
stantaneous transmission coefficient is found by
replacing v in Eq. (6a) by z(t). The intensity for
the resulting first two sidebands is then easil. y
shown to be

(6)

and is obviously the low-frequency limit of Eq. (7).
At high frequencies the particle will see a time-

averaged barrier of effective height V,. More
precisely: The intensity of the transmitted beam
will be dominated by the fact that a particl. e which
absorbs a quantum @+ and thus has energy E+k~
traverses the barrier more easily than particl. es

with energy E or E —0&. A particle incident on
the static barrier with an energy E+Sco has a
transmission probability T~,„=Te'"', ignoring
corrections of order (kru/E)' and (S~/V, -E)'.
Thus the intensity of the upper sideband, in Eq.
(7), for high frequencies, is given by T, = (V,/
2he)'T~+„„. The appearance of T~,„may be
puzzling, because it characterizes transmission
through the zokole barrier, at the higher energy,
whereas the quanta @~ can be absorbed anywhere
along the barrier. In view, however, of the de-
creased exponential decay at the higher energy,
it is clear that modulation quanta absorbed near
the incident end will dominate the upper sideband.
Similarly the dominant contribution to the lower
sideband comes from particles that emit modula-
tion quanta near x =d/2. Indeed T =( V/ 25+)' T,
at high frequencies, depends on the length of the
barrier only through T. The transition from Eq.
(8), with equal values for the two transmission
coefficients, to very unequal transmission prob-
abil. ities at high frequencies is best exhibited by
writing Eq. (7) in the form (T, —T )/(T, +T )
= tanh~~. Thus ~ specifies the crossover.

The WKB approximation al.lows an extension to
barriers of a more general shape. ( =Ae's~" is
determined by a solution of the time-dependent
Hamil. ton- Jacobi equation

aS/at =(2m)-'(aS/ax)'- V.

Take S=S,+s, where S,=-Et+ihf v(x)dx is the
solution for the static case, and s arises from
the modulation. To first order in V,(x), confined
to the barrier, we find

e(x)=i —e' ' dx' ', exp(- dx" . „))x(x--x)SK(x (10)

where (tu- —(u) denotes an expression obtained by
replacing (o by —+ in the preceding term. x, is
the left-end turning point of the barrier, where
we take s = 0. For small V,(x) we are again left
with only two sidebands. The exponential factor
in the first right-hand-side term of Eq. (10) de-
scribes the increased attenuation of the lower
sideband term, and has the form exp[- f„dx"u/
v], with v =km(x)/m. Thus, as in Eq. (7), the
velocity obtained from the wave-function decay
rate, combined with the barrier thickness, de-
termines the rel.evant transition time.

For dissipative tunneling, mentioned earl. ier,
we use the traversal time to obtain an estimate
of the effects of friction on transmission. The
energy loss of a particle with velocity ~ and fric-

tion coefficient y is given by bE =y f, v(x')dx' A.
particle tunnel. ing through a barrier does not, of
course, have a well defined velocity. Our tra-
versal time, however, defines an effective velocity
v =Ra(x)/m. For small dissipation we can eval. -
uate b, E with the help of the velocity v, (x) for the
undamped system. Thus, the tunnel. ing particl. e
loses energy bE(x) =y f, [h~,(x')/m]dx' as the
particle traverses the barrier. To find the trans-
mission probability we assume that the effective
WKB decay rate ~, in the presence of damping,
is still given by )(=(2ml V(x) -E(x)])' '/k where
E(x)=E, -bE(x) is the energy corrected for damp-
ing. The use of the WEB phase integral in the
presence of diminishing energy is an a~ hoc pro-

1741



VOLUME 49, NUMBER 23 PHYSICAL REVIEW LETTERS 6 DECEMBER 1982

cedure requiring more justification than we pro-
vide. It is, however, made plausible by the very
similar behavior for a particle which gives up a
modulation quantum. To first order in y we find
Ra=km, +[y/v, (x)]f,"v,(x')dx'. This gives a phase
integral for the exponential attenuation of the wave
function,

S = f8~(x)dx

=So+y f" [dx'/v, (x')] f" v (x")dx". (11)

If v, (x) is smooth and simple then the dissipative
effects provide a contribution in Eq. (11) of the
order of yd', where d is the tunneling distance.
Thus dissipation causes decreased transmission.
A decrease of this order has been predicted by
Caldeira and Leggett. "
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