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Positive Identification of the Cr4+ ~Cr+ Thermal Transition in GaAs
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Temperature-dependent Hall-effect measurements on two Cr-doped GaAs samples
show a dominant center at E~ =0.324 —1.4&& 10 T eV, with respect to the valence-band

edge. By comparison with secondary-ion mass spectroscopy measurements of the Cr
concentration, and recent EPR measurements of the Cr~+, Cr3+, and Cr4+ concentra-
tion in several samples, it is shown unambiguously that this energy describes the Cr4+

-Cr3+ transition. This is the first conclusive evidence for a charge-state transition
involving Cr4+ in GaAs.

PACS numbers: 72.20.My, 71.55.Fr

The discovery, in 1964, that Cr doping could
make GaAs semi-insulating (SI)' has stimulated
numerous investigations of this system. Evidence
suggests that the Cr enters the lattice on a Ga
site, using three of its outer-shell electrons for
tetrahedral bonding. Thus, in the EPR notation,
the neutral configuration is Cr"(3d'), but a donor
state Cr"(3d'), and two acceptor states, Cr"(d')
and Cr"(d'), have also been observed. ' ' The
transitions between these states are, naturally,
of high importance, from both practica1. and
academic points of view. Of the three possible
transitions involving the addition of an electron
from the valence band, only the Cr"-Cr" case
has been extensively studied, by both electrical
(thermal) and optical-absorption techniques. It
is this transition, of course, that produces SI
GaAs. Recent results give E, '"" = 0.838 —2.6
X10 T eV, ' and E,'I"=0.831 —2.8&10 T eV, '
where E, =—E(Cr" -Cr' ).

The other two transitions, Cr" —Cr" and Cr"
-Cr", are much more difficult to observe. For
the Cr" —Cr" case, it has recently been found'
that E, ' (295 K) = 1.54 eV with a, temperature
coefficient, from 77 to 300 K, of about —8 X10 '
eV/K. (Note that this level is in the conduction
band. ) For the Cr"- Cr'' transition, no thermal
measurements have been carried out, while re-
cent photo-EPR" and photoconductivity" re-
sults suggest that E,'P'=0. 42 —0.45 eV from the
valence-band edge. However, it should be point-
ed out that in these optical experiments there is
no proof that Cr" is directly involved, although
it is a reasonable assumption. In this paper, we
give conclusive evidence for the involvement of
Cr4' in a transition, namely in the thermal tran-

sition, Cr '-Cr''.
In Fig. 1 we present temperature-dependent

Hall-effect measurements for a p-type GaAs:Cr,
Zn sample, 781/9. This crystal and another, 781/
5, were measured over the range 140-660 K. The
hole concentrations were calculated from the
relationship p=(eA) ', where A is the Hall co-
efficient and e, the electronic charge. The Hall
scattering factor has been set equal to unity,
since that is considered a reasonable estimate
for all III-V compounds, ' and since, in any case,
a complete calculation for GaAs, including all
important scattering mechanisms, has not been
carried out. The Hall-effect data were fitted by
using a completely general charge-conservation
equation, as given by Look." From Eq. (40) of
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FIG. 1. Hole concentration vs inverse temperature
for QaAs sample 781/9. Squares are experimental
points. Solid line is theoretical fit with Eq. (5}, text,
with parameters as given in Table II.
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Ref. 10 it can be shown that

n =p+ Q (I„—/)n„
k, l, m

where k includes all donors and acceptors in the system, lk is the number of donor states of the 0th
defect or impurity, the index / runs from 0 to the totaE number of donor plus acceptor states of the 0th
center, the index ~ runs over all excited states, and

(2)

Here@» is the degeneracy of the Jim)th state, e» is its energy, and eF is the Fermi energy, with
all energies measured with respect to the valence band. The summation restriction means that l'gl
and m'~m, at the same time. Note that e» is the energy necessary to add l electrons, in the mth
excited state, to a center of type 4, which originally had l=0, i.e., &k0=0 We must distinguish this
energy definition from that of the ionization energy, which is E(l -i +1) =- c„(,+, )

—e», the experimental-
ly measured quantity.

Now Cr in GaAs exhibits one donor state, Cr", and two acceptor states, Cr" and Cr". Thus, /k=1,
and l=0, 1, 2, 3. The ground-state terms are given in Refs. 2, 3, 11, and 12, and the degeneracies are
immediately obvious from these terms: g, (4+) =3, g, (3+) =4, g, (2+) =5, and g, (1+)=6. Here we have
disregarded spin-orbit splittings, which are much smaller than kT,""at least over the range of this
experiment, 140- T -660 K. Also, the higher term states are at energies much greater than kT, so
that no summations over excited states (index m) need be carried out at all. Finally, we will not in-
clude the Cr" configuration (i = 3) in our summation, since, at standard pressure, the ground state is
evidently slightly above the conduction-band edge, thus making this configuration unstable (except,
perhaps, for highly degenerate n-type samples). Equation (1) then becomes

Cr

1+(g,/go) e xp[(-E&+6p) /kT]+(g& /g )0exp[(-E2+2f F)/kT)

&Cr
1 + (g /g2) exp[(e, —2 e F) /k T] + (I,/g2) exp[(e, —e, —e F)/kT ]

= p+ Nos- N~s +Nrc' -Ncr'

Here N» (N») is the concentration of all donors (acceptors) more than a. few kT above (below) the
Fermi level. It is assumed that there are no significan& concentrations of donors or acceptors (be-
sides Cr, of course) within a few kT of the Fermi level. (If so, the data obviously will not be well fit-
ted without the consideration of such centers. ) For samples 781/5 and 781/9, several of the terms in
Eq. (3) can be ignored. Then, by using the ionization energies, E(4+ - 3+)=—E, = e, —e, = e„and E(3+
-2+)=—E, = e, —e „and also p=N, exp(-e~/kT ), we get

0= +N -N + N
1+p '[(g,/g, )N„exp(-E, /kT) J

' (4)

where ~ =1.66x 10"T'"cm ', the valence-band effective density of states. " The terms involving E,
are not important here, although they dominate, of course, for SI samples.

The best values for the four relevant parameters [N c„N» -N», E», and (g, /g, ) exp(o/k) ] were
determined by a general, least-squares minimization technique, and are presented in Table I. Here,
o.' is defined by E, =E„—aT. The value of n for each sample was determined by assuming g, /g, =f,
certainly a reasonable assumption over the temperature range of the experiment, as discussed earlier.
Thus, the energy can be written as

E, =E(4+ -3+) =[(0.324+0.002) —(1.4+0.3) x10 4T] eV, 140-660 K, (5)

with respect to the valence-band edge. For sample 781/5, which was a small chip from near the wa-
fer edge, the accuracy is poorer, because of more data scatter. However, the results are consistent,
as seen in Table I. We may note that a significantly poorer fit was obtained for both samples by at-
tempting to linearize the temperature variation of E, with respect to the conduction-band edge, rather
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TABLE L Curve-fitting parameters for temperature-dependent Hall-effect data. Also, SIMS results for Nc,
compared.

Nc, (N«..
Sample (10'6 cm ) corr. SIMS)'

Nxs NDs
(10'6 cm 3)

z(4+-3+), 7 = o

(eV)
(g&/go)

&& exp(&/&) (10 eV/K) beSt C
Xmin

781/5

781/9 8.5+ 0.8

(6.8)

(8.5)

6+3

5.6+ 0.5

0.332 + 0.008

0.324 + 0.002

3+8

6 4+3+5 1.4+ 0.3

2x10 3

2x 10-4

Correction factor of 1.7; see text for details.
On the assumption g&/go=~.
)(=—N [log(p, ~„,/p, ~&, )12, where N is the number of data points.

than the valence-band edge.
We next want to ascertain if the measured elec-

trical-center concentrations for the two samples
are indeed equal to their respective Cr concen-
trations. Secondary-ion mass spectroscopy
(SINS) measurements'4 gave [Cr]=4x10" cm '
for 781/5, and 5x 10"cm ' for 781/9. However,
in an earlier comparison of SIMS results with
neutron-activation (NA) results, "on two unre-
lated Cr-doped GaAs samples of similar Cr con-
centrations, it was found that the SIMS results
were lower by factors of 1.7, in both cases. Thus,
if the same SIMS/NA relationship exists for the
present samples, then their true Cr concentra-
tions are (6.8 and 8.5)x 10"cm ', respectively,
very close to the measured concentrations of the
electrical centers. All other impurity concen-
trations measured by SIMS were more than a fac-
tor of 4 smaller than the Cr concentration. Thus,
the relevant center cannot be associated with any
impurity other than Cr, although at this stagd,
we cannot rule out a defect. Note also that the
analytical results (SIMS and spark-source mass
spectroscopy) show that the total shallow-accep-

Ãc." 1

N, 1+p[(g,/g, )N„exp( F.,/kT)]- (6b)

At 295 K, Eq. (5) gives E,(4+-3+) =0.283+0.009
eV, and from some previous work, "E,(3+-2+)
=1.424 —0.68 = 0.74 eV. The hole concentrations
for the p-type samples of Stauss et al. ' can be

tor concentration (see Table I) cannot be due
simply to Zn even though the samples were
doped (lightly) with Zn. Other impurities, and
possibly defects, must be involved.

To prove that the electrical activation energy
corresponds to the Cr" —Cr" transition, we
turn to some EPR measurements of Stauss et a~. ,

'
in which they determined the Cr", Cr", and
Cr" concentrations in several samples, of differ-
ing Fermi levels. Part of their Table I is re-
produced as our Table II. From Eq. (3), after
ignoring the terms involving 2eF, which turn out
to be negligible for all samples listed in Table II
(but not in general), we can write

4+

1+p '[(g,/g, )N„exp(-E, /kT)] '

TABLE II. Concentrations of the various charge states of Cr in oaAs, at 295 K, as
predicted by Eqs. (6a) and (6b), and as measured by EPB, (Ref. 3). All. concentrations
in units of 10'6 cm 3.

p(295 K) p (295 K) [Cr] [Cr2+] [Cr3+] [Cr +]

Sample (0 cm) (cm 3) Meas. Meas. Pred. Meas. Pred. Meas. Pred.

1
RA

2B
3
4

0.074
224

1950
5x 10
0.090

2 8x10~7 7 9
9.3x10~3 21.0
1.1x, 10~3~ 7.6
2.2x 106 b 12.8
3 9x 10-4 b Xc

(n type)

0
~0

-0.1
7.8
X

0
0
0

6.8
X

0
16.7
7.2

5
0

7.9
11.6 4.3

7.1 (0.3
6.0 0

0 -0

7.9
6.9
0.4

0
0
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Estimated from p with the assumption p&
= 300 cm /V sec.

"Estimated from p with the assumption p„= 4000 cm /V sec.
'Simply stated as "observed" in Ref. 3.
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estimated from their measured resistivities by
assuming a hole mobility of 300 cm'/V sec. For
the SI and n-type samples, an electron mobility
of 4000 cm'/V sec was assumed. These mobility
estimates are not critical to the conclusions
reached below.

The calculated Cr", Cr'', and Cr" concen-
trations are presented along with the measured
(EPR) concentrations in Table II. The agreement
is quite remarkable, considering the various
possible sources of error, and leaves no doubt
that the measured electrical activation energy in-
deed corresponds to the Cr"-Cr" transition.
Note that the difference in temperature between
the EPR measurements (4.2 K) and the electrical
measurements (295 K) is unimportant here, be-
cause, in both cases, P «

~ N» -N» ~, and thus,
from Eq. (4), the Nc, "concentration should re-
main nearly the same from 4.2 to 295 K.

In summary, we have, for the first time, con-
clusively identified a transition which involves
Cr" in GaAs namely the Cr"-Cr" thermal
transition. Room-temperature thermal energies,
~ith respect to the valence band, can now be
given for all three transitions: E,(4+-3+) =0.28
+ 0.01 eV; E,(3 +- 2+) = 0.74 + 0.02 eV; and E,(2+
-1+)=1.54+ 0.01 eV. By assuming tha. t the re-
cent photo-EPR" and photoconductivity" re-
sults pertain to the oPtical (absorption) Cr"
-Cr" transition, we can deduce a Franck-Con-
don shift of about 0.12 eV, at 150 K.'
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He-Scattering Investigation of CO Migration on Pt(111)
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The capability of a He-scattering experiment to detect the migration of adsorbed. mole-
cules on monocrystal surfaces is demonstrated for the first time. CO migration and

island formation can be investigated at very low coverages because of the very large
cross section for He scattering of CO adsorbed on Pt(111), The activation energy for
CO migration on Pt(ill) is found to be 7 kcal/mole. No island formation at low CO
coverages on a defect-free Pt(111) surface was detected in the temperature range 120-
400 K.

PA CS numbers: 79.20.Bf, 68.45.Da, 82.65.Nq

A few years ago Schmidt stated that measure-
ments of surface diffusion rates on single-crystal
planes are exceedingly difficult. ' Heed and

Ehrlich noted in a recent paper' that, except for
a number of field-emitter studies, the migration
of adsorbed gases on single-crystal surfaces has
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