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The Hohenberg-Kohn theorem is extended to fractional electron number N, for an
isolated open system described by a statistical mixture. The curve of lowest average
energy .Fz versus jV is found to be a series of straight line segments with slope discon-
tinuities at integral N. As N increases through an integer M, the chemical potential
and the highest occupied Kohn-Sham orbital energy both jump from Ez-'Ez

&
to E~~g

-E~. The exchange-correlation potential 6E «/6n (r ) jumps by the same constant, and
lim7 ~E QQ/&n(r) ~- 0.

PACS numbers: 31.10.+E, 71.45.Om

The great practical and conceptual importance
of density-functional theory' ' is well established. '
For a system of X electrons subject to an ex-
ternal potential u(r), Hohenberg and Kohn' have
demonstrated the existence of a functional E„[n]
such that minimization of E„[n] with respect to
variations of n(r), subject to the constraint
fcPrn(r) =N, yields the ground-state density n(r)
and energy F-. It is commonly supposed that
number-conserving variations may be replaced
by arbitrary ones through the introduction of a
Lagrange multiplier p,:

O(E„[n]—pf d'rn(r)j =0. (1)

The Euler-Lagrange equation for n(r) is then

t)E„/5e(r) = p. , (2)

and

p= &E/&N.

The formal similarity of Eq. (3) to the equation
for the chemical potential of an open system has
led to the identification of p, with the chemical
potential' and of g = —p. with the electronegativity. "

Two fundamental questions lie obscured beneath
Eqs. (1)-(3): (1) Is the energy E defined for non-
integral electron number N? (2) Is E differen

tiable with respect to N'?

If the answers to both questions are yes, a
paradox arises within Hohenberg-Kohn theory:
Consider a system composed of two well-sepa-
rated atoms X and & in an otherwise empty uni-
verse. The system energy E~=E~+E~ is simply
the sum of the separate atomic energies. Let X
and F be different neutral atoms with different
chemical potentials, tj.r&p~. A density variation
which shifts ~X~&0 e1.ectrons from X to F will
then lower the system energy: 5E~=(pr- p~)
x p&„&0. The energy will minimize with a net
negative charge on Y and a net positive charge
on X, in contradiction of the facts.

This example suggests that fractional electron
number may arise as a time average in an open
system, e.g. , atom X which is free to exchange
electrons with atom Y. In quantum mechanics,
an open system with a fluctuating number of par-
ticles is described not by a pure state or wave
function 4 but by a statistical mixture or ensem-
ble I'. The latter is defined by a set of pure
states 4 „4„.. . and their respective probabili-
ties p„p„.. . ; the expectation value of an opera-
tor 0 is (0)r =5;p;(4', ~0~4, ). Note that at
zero temperature the system and its reservoir
together may alternatively be described by a sin-
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E = (1 —(d)E~ +(dE~ yy ) (5)

where E„and E„„are the ground-state energies
for I and 81+1 electrons subject to the external
potential v (r).

Alternatively, the constrained scarc'h of Eq. (4)
may be extended over all statistical mixtures of
any type yielding the density n(r). The minimum
of E„[n] over all n(r ) integrating to M+~ elec-
trons is still Eq. (5), provided that the plot of E„
versus integer M is concave upward (as it is in
ordinary electronic systems). The reader may
verify this for a mixture of (M-1)-, M-, and
(M+1)-electron states; the minimizing energy E
is independent of the reservoir. [The concave-
upward condition, E„&(E„+,+E„,)/2, is satis-
fied for noninteracting fermions and enhanced by
repulsive interactions. ]

According to Eq. (5), the curve of E versus N
is a series of straight-line segments. The curve
itself is continuous, but its derivative p, = sE/&N
has possible discontinuities at integral values of
N. This conclusion is consistent with recent
work by Phillips and Davidson, ' who gave an ana-
lytic form for E(N) for a model of harmonically
interacting fermions in a harmonic external po-

gle pure state.
We now extend the Hohenberg-Kohn theorem to

trial densities n(r ) which integrate to N =M+~
electrons where I is a nonnegative integer and
0 -~ ~1. We follow the "constrained search"
formulation which has already been applied to
pure states' and to ensembles, ' for %=fixed inte-
ger. Define the universal variational functional

F[n]= min(T+ V«)z, (4)
I" ~n

where T and V„are the kinetic and electron-elec-
tron repulsion energy operators, respectively.
F[n] searches over all statistical mixtures I' (of
a certain allowed type) which yield the given den-
sity n(r), and delivers the minimum (T+ V„)z.
The allowed type is a mixture of an M-electron
pure state 4'„with an (M+1)-electron pure state

The respective probabilities must be 1 —~
and ~, since (1 —~)M+&u(M+1) =M+~. Note that
n(r) =(1-~)n„(r) +&un„+,(r) [where 4'„(r) yields
the density n (r), etc.]. More importantly, note
the existence of the variational principle: Minim-
ization of E„[n]=F[n] + Jd 'rn(r)v—(r) with respect
to number-conserving variations of n(r) yields
the lowest average energy that can be achieved
by 3f +~ electrons in a statistical mixture of the
allowed type,

y;~ = '(I, +A,.)— (7)

be the Mulliken' electronegativity of neutral atom
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FIG. 1. Change in total energy of two atoms X and

P, separated by a large distance p, when AN+ =Nz
—gz electrons are transfer red from Y to X. (X = Li,
y = H).

tential. Assuming that this form could be ex-
tended to nonintegral N, they found discontinui-
ties of p. = &E/&N at certain integers.

When applied to a single atom of integral nu-
clear charge Z, Eqs. (3) and (5) give

-I (Z —1 &N &Z),

-A (Z &N &Z+1),

where I=E~, -E~ and A =E~ -E~„are the first
ionization potential and electron affinity, respee
tively. The functional derivative 5E„/5n(r ) of
Eq. (2) may or may not be defined for a, neutral
atom, but in any case the density may be found
by solving the Euler equation (2) for either N &Z
or N&Z and then taking the limitÃ-Z; the two
limits for 5E„/bn(r) will differ by the constant
I—A.

We can now resolve the paradox with which we
began. Figure 1 shows the total energy of a neu-
tral system composed of atom X and atom Y at
infinite separation, as a function of ~~=-XX-Z~.
The energy minimizes nonanalytically at ~~=0
f'or any choice of X or Y, since the smallest first
ionization potential of the periodic table (I=3.89
eV for Cs) is greater than the largest electron
affinity (A = 3.62 eV for Cl).

If the atoms are at a large finite separation R,
one must include the Coulomb interaction -e'/B
in the energies of the ionic configurations X'Y
andx Y', as also shown in Fig. 1. Let
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i and let ~ denote the more electronegative atom.
Then the ground state is the neutral-atom state
XY(~x =0) for R &R„and the singly charged
ionic state X'Y (~x=-1) for R &R„where the
critical separation is

R,= e'(I„A,)-

At the critical separation, large fluctuations in
the charge on each atom can occur. This predic-
tion of a sudden switch of ground-state character
at a critical separation applies unequivocally to
CsCl, where B, =53 A. For LiH, where A, =3.1
0

A, the prediction may fail if other interactions
supervene.

Essentially, electronegativity differences among
the constituent atoms determine the direction and
magnitude of charge transfer upon formation of
molecules and solids. That Mulliken's formula
is an approximation to a slope of an E versus N
curve was first pointed out by Pritchard and
Sumner. "

At strictly zero temperature, an atom in equi-
librium with a reservoir will be neutral for any
chemical potential in the range -I& ]Lf. & -&. We
can get a sharper value by applying standard
techniques of the grand canonical ensemble at
finite temperature T = 1/k)) P. The probability of
a stationary state +, is p; = exp[-p(E; —)((N, ) ]/
Q,.exp[-P(E„—~, )]. For Z —1&N &Z+1 and

low T, the only nonnegligible probabilities belong
to the ground states for Z —I, Z, and Z + I elec-
trons. The average energy and particle number
are, respectively, E =p;p, E; and N=+;p;N;.
The latter equation may be solved explicitly to

find

1, -"[~2. 4.- 8( I-4)( 1 —~2) ] I/2
/J ln - lb'( )

(9

where 6 = N -Z. jL(, still has the meaning of Eq.
(3), with the derivative taken at constant entropy. '
Note that

(N =z —1),
--,'(I+A) (N=Z), (10)

+ ~ (N=Z+1),
as first shown by Gyftopoulos and Hatsopoulos. '
In particular, the chemical potential of the neu-
tral atom is -g~ where g is the Mulliken elec-
tronegativity of Eq. (7), as expected. "Note also
that as T-0 the continuous dependence of Eq. (9)
upon N reduces to the discontinuous one of Eq.
(6). For atoms, ordinary temperatures are quite
low: On the scale of Fig. I the eye cannot dis-
tinguish between 7 =0 K and T =2000 K.

Similarly, consider the problem of tuo well-
separated atoms, X and Y, in equilibrium with a
reservoir. Let the two atoms be overall neutral:
N~+N~=Z~ +Z~. Then we find that as T-0

p, = —~(I~h +A ~„), (11)
where I h is the lesser of IX and I&, and A~„
the greater of A~ and A. ~. The two atoms are
then separately neutral: Nx = Z~ and N ~ = Z ~.
To prove Eq. (11), following Ref. 9, compare the
energy changes for XY+UV-(XY)'+(UV) and
XY+UV-(XY) +(UV)'.

Practical calculations within density-functional
theory usually appeal to the Kohn-Sham theorem,
which asserts that the density n(r ) and energy E
may be constructed from orbitals g,(r ) satisfy-
ing the self -consistent Schrodinger equation

V'+ (r)+e' d' ' - -,
,

+,"-', ((,(r) = y, (r),
2m Ir —r'

I Dn~r j

where E„,[n] is the exchange-correlation energy
An extension" ' of the Kohn-Sham theorem ap-
plies even to an interacting system whose ground-
state density is not also a ground-state density
for nonintexacting electrons in a local potential.
The orbital energies still have the significance"

&n = eE/sfn o ~

where f„,is the occupation number of orbital
P,(r ). The electron number may be nonintegral,
and O-f, -1.

Exact results may now be derived for the max-
imum occupied Kohn-Sham orbital energy c

! and for the large-~ limit of the Kohn-Sham po-
tential in an atom. Comparison of Eqs. (3), (6),
and (13) reveals that

-I (Z —1 &N &Z),

-A (Z &N &Z + 1) .
Consider what this means for, say the H atom
with its degenerate Is~ and Is ~ orbitals: As N

increases through Z, the exchange-correlation
potential 6E„,/6n(r ) must jump discontinuously
by the constant I-A. Moreover, rigorous theo-
rems on the long-range behavior"" of the den-
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sity in a neutral atom reveal that

s „-fJ ff(~) I (l5)

where v, ff(r) is the effective potential in Eq. (12).
From Eqs. (14) and (15) we can conclude that

v ff( ) =lim, „5E„,/6n(r) -0.
By Eq. (2), p= lim„„(6T,/5n(r ) + 5E„,/5n(r) j
where T, [n] is the noninteracting kinetic ener-
gy, '""and thus p ~ lim„„5T,/5n(r). All
bounds are expected to be very tight" when N

tends to Z from below.
The exchange-correlation functional E„,[nJ is

not known explicitly except in various approxi-
mations. For separated LiH the local density ap-
proximation' displays no derivative discontinuity,
and so it minimizes the energy incorrectly at
the configuration Li"'"H '". The spin-restrict-
ed Hartree-Fock approximation leads to an even
worse dissociation limit, "Li" "H '".

All of our conclusions concerning atoms may
be generalized to other electronic systems. In
particular, the metal-insulator transition due to
correlation is another example of a derivative
discontinuity of E„,.
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Direct Optical Observation of Interfacial Depletion Layers in Polymer Solutions

C. Allain, D. Ausserre, and F. Rondelez

Ply'ique de la Matiere Condensee, College de France, F-75231 Paris Cedex 05, France
(Received 22 July 1982)

The excitation of fluorescently labeled polymer coils by shallow optical evanescent
waves permits measurement of the local monomer solute concentration in the vicinity
of a nonadsorbing wall over controlled, submicroscopic distances. The existence of
a depletion layer at the solid-solution interface is thus demonstrated directly for the
first time. The results obtained on a 103 000-molecular-weight polystyrene sample dis-
solved in ethyl acetate are in agreement with the entropic repulsion model.

PACS numbers: 36.20.Ey, 68.45.-v

Interfacial phenomena are a field of growing
physical. interest and have generated a recent out-
burst of experimental. work in various systems. '
In most of these cases, the results were obtained
in the vicinity of a phase transition, which has
the advantage of scaling up the interfacial layer
thickness.

The present work is devoted to dilute macro-
molecular solutions in the vicinity of an impene-
trabl. e, nonadsorbing wall. Such a system is
amenable to experimental investigation because
of the l.arge size of the constituent objects and is
relevant to such important research fields as col-
loid stabil. ization, gel. permeation chromatography,

1694 1982 The American Physical Society


