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Entropy Evaporated by a Black Hole
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Lt is shown that the entropy of the radiation evaporated by an uncharged, nonrotating
black hole into vacuum in the course of its lifetime is approximately ~ times the initial

3
entropy of this black hole. Also considered is a thermodynamically reversible process
in which an increase of black-hoke entropy is equal to the decrease of the entropy of its
surroundings. Implications of these results for the generalized second law of thermo-
dynamics and for the interpretation of black-hole entropy are pointed out.

PACS numbers: 04.60.+n, 05.70.Ln, 05.90.+m, 97.60.Lf

Bekenstein has conjectured that the entropy of
a black hole can be regarded as a measure of
ignorance of an observer located outside of its
horizon about the black hole's internal state, or,
alternatively, about the initial, precollapse phase-
space configuration which has led to the forma-
tion of this black hole'. The ignorance of an ex-
ternal observer is assured by the "black hole has
no hair" theorem, ' which implies that no observer
remaining outside a black hole can know more
than its mass, angular momentum, and its charge.
However, Bekenstein reasoned, a specific black
hole must have originated from some specific ob-
ject. Moreover, an observer curious enough to
cross the horizon and become, irreversibly, an
"internal observer, " could, presumably, learn
about the black hole's internal state. This inter-
nal state should be related to the precollapse
state. Therefore, Bekenstein's conjecture can be
backed up with the following two plausible asser-
tions: (1) The entropy of the black hole, S,H, is
related to the number of the internal configura-
tions of the black hole, W, by the Boltzmann
formula, SBH = lnW. (2) There is a one-to-one
correspondence between the internal state and

the precollapse configuration.
So far, it has proved difficult to turn this intui-

tive argument into a rigorous derivation of black-
hole entropy. The crux of this difficulty lies in
devising a reliable count of "the number of initial
configurations that result in a formation of
the same black hole. " A count of the "internal
states of black hole" is, at present, equally
elusive. ' Thus, so far, no one has been able to
confirm the expression for the entropy of the
black hole obtained by Hawking, ' Ss„=A/4,
where A is the area of the black-hole horizon,
with a rigorous and independent estimate of W.

The aim of this paper is to present two calcula-
tions directly relevant to Bekenstein's conjec-
ture: (1) I shall estimate the total number of
configurations evaporated by the black hole into
vacuum, and I shall find that their entropy ex-
ceeds the entropy lost by the black hole by a fac-
tor -~s; (2) I shall show that in a thermodynam-
ically reversible process the total number of
configurations absorbed by a black hole can be
matched as closely as desired by the increase
of the black-hole entropy. This, in effect,
proves Bekenstein's conjecture. Neither of our
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arguments could have been made by Bekenstein
at the time when he put forward his conjecture'':
Both of them are based on the phenomenon of
black-hole radiation, which was proposed by
Hawking some time later. 4

To calculate the entropy of the radiation emitted
by the black hole we start from Hawking's formu-
la for the black-hole temperature: T ~H

= ic/2v.
Here ~ stands for the surface gravity of the black
hole. For an uncharged, nonrotating black hole,
which will be considered below, entropy and tern-
perature are given directly in terms of the black-
hole mass:

SpH =4&M,

T,H
= (8~M) (2)

Black holes emit blackbody radiation at the tem-
perature T».~' Therefore, the radiation emit-
ted in a short time interval dt carries an energy
equal to dE = Zo. (TB~)'dt, and an entropy of dS
~~3Zo. (TBH)'dt. Here Z is an effective cross sec-
tion of a black hole and n is the usual Stefan con-
stant. To compare the decrease of the black-hole
entropy with the increase of the entropy of its
surroundings I calculate

dSBH =4m[M' —(M —dE)']=8nMdE.

Now it is not difficult to evaluate the entropy pro-
duction ratio A:

R = dS/dS gt.( ~ + .
This is the first key result of this paper. I shall
confirm it below with a more precise estimate.

To arrive at a general formula for the entropy
production ratio R applicable also in a more
realistic situation when the emitted radiation is
not exactly black body, we shall use thermody-
namic identity dE|3H = T~HdS~H. From this iden-
tity it follows that, when the radiation emitted
during dt carries energy dF = dE», and some
arbitrary amount of entropy, dS, the entropy
production ratio must be

R = dS/dS BH
= T gH dS/dE .

For blackbody radiation the right-hand side of
Eq. (4) evaluates readily to —,'.

In case of the actual black-hole emission the
most significant correction will result from the
mode-dependent opacity of the black hole I;
which, for a given black hole, is a function of
the particle species s, energy ~, angular mo-
mentum (l, m) and helicity p. If we assume that
the opacities are given, A can be computed once

xe" —(e" —1) ln(e" —1)
(7)

J= f dxx'cr(x)/(e" —1). (8)

In the above x =c~/T». For the simplest case,
ct(x) = 1, both integrals can be evaluated analytical-

dS and dF are evaluated. According to Planck,
the average entropy of a single bosonic mode is
given by

S, „, ~ =((n)+1) ln((n) +1)—(n) In(n) . (5)

where (n) is the average number of quanta per
mode. ' For a black hole, (n) = I', , [exp(&o/
TBs) —1] .& The total entropy of the emitted
radiation is therefore dS-5~, , ~S, , The
corresponding energy is given by

dE-Q, „, ,+r, „, ~[exp(cd/T„) —1] '.
The ratio dS/dE which plays such a key role in
Eq. (4) is now given directly in terms of the tem-
perature and of the mode opacities.

Calculation of the black-hole opacities is rather
complicated and analytic expressions describing
their behavior can be given only in the limits ~M
» I and +M «1. We can, nevertheless, assess
the sensitivity of the entropy production ratio R
to the mode-dependent opacity by retaining the
key feature of the black-hole spectrum which dis-
tinguishes it from the genuine black body, that is,
the relative deficiency of low-frequency quanta.
To facilitate this calculation I write the rates of
entropy and energy emission in an approximate
form:

dS, ~/dt =27wM g deed o, & (ru, M)S,

dE, ~ /dt = 27mM' I d(u (u'v, p ((o,M)( n) .
Above, o, ~ (~,M) is the absorptivity of a unit
area of the optical section of the black hole,
which is equal to 27&~'. It is defined in terms
of the frequency-dependent total cross section of
the black hole, Z, ~(&u, M), which can be expressed
directly in terms of the mode opacities:

o, ,(~,M) = r, ,(~,M )/(27~M')

=5, &. . ./[27(u)M)'].

For massless fields v, ~(~,M) is a function of c ~

and M only through the product M. ' This im-
portant scaling property allows us to write the
entropy production as a ratio of two integrals:

R =dS/dS~H =I/J,
where I and J are given by
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ly and their ratio is equal to, , in agreement
with Eq. (3). One can also show that for an arbi-
trary nonnegative v(x) the ratio of I and tw'ill be
always greater than unity; the second law of
thermodynamics, which requires I/Z&1 if the
black-hole evaporation is to proceed, is satisfied.

For massless fields, v(x), typically, approach-
es 0 in the limit of low-frequency quanta and has
a high-frequency limit of l.' A "first approxima-
tion" of this effect can be achieved by introducing
a cutoff at some x =X. That is, v(x) = 0 for x(X
and otherwise v(x) = 1. The ratio R is now a func-
tion of this low-frequency cutoff, and can be
readily obtained through a numerical computation.
For example, X = 1 yields dS/dS, H

= 1.31, while
X = 10 results in dS/dSB„= 1.09. In general, as
the cutoff moves towards the high-frequency limit,
the entropy production ratio B approaches unity.
On the other hand, if one would set X =0, and
introduce instead a high-frequency cutoff, R
could become arbitrarily large.

In view of the increase of entropy one might be
tempted to reason that, since the entropy of the
black hole, interpreted via Boltzmann's formula,
is a measure of the number of its internal states,
then the mapping from the internal state of the
black hole to the final state of the emitted radia-
tion cannot be one to one, and, therefore, cannot
be achieved by means of a unitary S matrix. Con-
sequently, evaporation of the black hole into vacu-
um appears to be fundamentally irreversible,
with pure states evolving into genuine density
matrices: Quantum theory of black-hole evapora-
tion would seem to demand existence of a "super-
operator. "' Moreover, at first sight R ) 1 ap-
pears to settle a controversy on whether black-
hole formation and its subsequent evaporation
are "genuinely" irreversible. ' " Unfortunately,
these fundamental questions cannot be answered,
in our opinion, with arguments of purely thermo-
dynamic nature. Both black-hole collapse and
evaporation occur far from equilibrium, and an
irreversible increase of entropy in their course
is likely to be of the same nature as an increase
of entropy in an evolving, ordinary many-body
system, with a dynamics which is fundamentally
reversible. Nothing short of a fully quantum de-
scription of the process of evaporation is likely
to resolve these problems. For, the present ap-
proach in which the fields are quantized, but the
background metric is classical, may be "forcing"
evolutions which are fundamentally reversible to
appear irreversible by implicitly "tracing out"
correlations of emitted quanta with the quantum

state of the background gravitational field. And

there are reasons to suspect that some unac-
counted for correlations are indeed present
among the quanta emitted by the black hole. As
circumstantial evidence for them one can regard
the predicted impressions of an observer who
falls freely into the black hole. For him radia-
tion should disappear altogether, at least close
to the horizon. ' Clearly, this is not a behavior
of the run-of-the-mill blackbody heat bath. The
state of the field along the free-fall trajectories
must be very special, and this may be considered
as an indication of such correlations.

Most important corrections to our estimate of
g will result from the interactions between
quanta, as well as from the existence of massive
fields. They are .nevertheless unlikely to be
large, and are definitely not going to alter the
key conclusion: The entropy S of the debris left
after the time 7 when the black hole of mass ~
has evaporated completely into vacuum,

is —3Ã0 larger than the entropy of the black hole.
When a black hole is placed in a "heat bath" of

temperature 9, changes of the energy and en-
tropy of the black-hole surroundings caused by
the radiation it emits and absorbs proceed ap-
proximately at the rate dE/dt —a(T»4 -8'), dS/
dt -~ a(T»' —8'). The ratio between the entropy
of the radiation evaporated by the black hole and
its entropy loss is now given by the formula

R'(8, T BH) =dS/dS» =dS/(8mIVidE)

=, TBH(TBH -8 )/(T» -8 ). (10)

In the vacuum limit, i.e. , when 8/T»-0, Eq.
(10) goes over to the previously obtained Eq. (3).
At the "other end, " i.e. , in the limit 8/T» -~
the ratio dS/dSBH =+ (T,„/8) -0.

The most interesting case occurs when T»= 0.
Then the black hole is nearly in equilibrium with
its environment. For example, when 9 =T~H —6,
the ratio of entropies becomes

dS/dS»= 1+6/2T» .

Thus, the entropy production ratio can be made
as small as one wishes by allowing the black hole
to evaporate slowly into a heat bath of a tempera-
ture only slightly below the temperature of the
black hole. These conclusions are in accord with
the generalized second law of thermodynamics.
They lead us to the second key result of our con-
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siderations: When the entropy is interpreted in
- terms of Boltzmann's formula, one is forced to

conclude that in a thermodynamically reversible
process disappearance of a certain number of
configurations absorbed by the black hole from
its environment results in the gain of the same
number of internal configurations of the black
hole, reflected in the increase of its entropy.
This is precisely the thesis of the Bekenstein
conjecture.

A "practical" realization of such thermody-
namically reversible evolution of the black hole
is easily devised: Consider a black hole insulated
in a perfectly reflecting container. When the
mass of the black hole, M, the volume of the con-
tainer, V, and the total energy inside the con-
tainer, U, satisfy the equation U —M =aVT»
= aV (8aM ), the black hole is in equilibrium
with the surrounding heat bath. """Such equi-
librium will be indeed stable (a global extremum
of entropy) when M/U) 0.97702. The size of the
black hole can be now altered in an adiabatic
fashion, by slowly changing the volume of the
whole container. When this change is sufficient-
ly slow, so that all the modes within the contain-
er remain close to equilibrium with the black
hole, the increase of the total entropy of its con-
tents will be negligible. This thermodynamic
system can be used as a "black-hole engine":
One of the walls of the container can be allowed
to expand, much like a piston of an ordinary
engine cylinder, under the pressure of the black-
hole radiation. Unfortunately, with the current,
scarce, supplies of Hawking-size black holes
this process is unlikely to help in the solution of
the energy crisis.

The aim of this paper was to show that the
evaporation of the black hole will usually occur
as an irreversible process, with an increase of
the total entropy. This increase can be charac-
terized by the entropy production ratio P, which
for the black hole evaporating into vacuum is
typically of the order of 1.3. However, black-
hole evaporation can be also made thermodynam-

ically reversible, with the entropy of the evapo-
rated radiation equal to the entropy lost by the
black hole. This last result confirms Beken-
stein's conjecture, according to which the en-
tropy of the black hole is a measure of the num-
ber of the precollapse configurations: It provides
a direct proof of the inverse of this conjecture by
showing that exp(S») configurations will be pro-
duced in a reversible evaporation of the black
hole. Moreover, a reverse of such an evapora-
tion process can be used to form a black hole.
Therefore, the arguments verify as well the
original conjecture of Bekenstein.
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