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Resonance in an Oscillator with Two Nearby Frequencies: The Three-Level System
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The response to a monochromatic field of a three-level system, in which the (1,2) in-
terval is relatively close to the (2,3) interval and the associated dipole matrix elements
are arbitrary, is examined. It is found that, for weak pumping, proper detuning from
exact two-photon resonance toward the more strongly coupled frequency produces a spin-

1

z—type Rabi oscillation between levels 1 and 3, while proper detuning at strong pumping

in the opposite direction produces a spin-1-type oscillation.

PACS numbers: 42.50.+q, 03.65.-w, 32.70.-n

The study of the behavior of various types of
oscillators driven by monochromatic forces
— essentially, the subject of resonance—is of
fundamental interest. The response to a mono-
chromatic force (MF) of a harmonic oscillator,
which has a single natural frequency, is the
simplest illustration of resonance. The response
to a MF of an anharmonic oscillator, which has a
continuous range of frequencies, classically, and
a discrete range, quantum mechanically, is a
more complicated problem, and has been the sub-
ject of a rich literature, both classical' and quan-
tum mechanical ™ motivated, recently, by ef-
forts to produce selective molecular excitation by
a laser field for purposes of isotope separation.
Among the quantum mechanical studies, much at-
tention has been given to oscillators with a finite
number of levels.® The simplest and most funda-
mental of these is, of course, the two-level sys-
tem, the response of which to a MF is well known
and furnishes the basis for the understanding of
many types of resonant phenomena. The next
simplest, expectedly, is the three-level system,
which has also received considerable attention,
both exclusively,® and as a special case of a more
general treatment of #-level systems.**® In an
analysis of the absorption of energy by this sys-
tem, the interesting fact was discovered® that,
for a weak MF, properly detuned from exact two-
photon resonance in the direction of the more
strongly coupled frequency, the three-level sys-
tem behaves, approximately, like a two-level
—or spin-— system involving only levels 1 and
3; the occupation probability executes, approxi-
mately, a slow periodic (Rabi) oscillation be-
tween these two levels, while the occupation
probability of level 2 oscillates rapidly with very
small amplitude. It is the purpose of the present
discussion to show that there exists another fype
of approximately periodic oscillation of the occu-
pation probabilities, for a strong MF and for ap-
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propriate detuning in the direction of the move
weakly coupled frequency, in which all three
levels play an equal role, a type of oscillation
that resembles the Rabi oscillation of a spin-1
system.’

Consider an atomic system of three levels,
more or less evenly spaced, with energies 7w,
hw,, fiwy, in ascending order, and with only two
nonvanishing dipole matrix elements, U, and
—iIzs, corresponding to the frequencies w,, and
Wy, where wy; = lw; —w;l. If the field acting on
the system is given by E =2_]§‘.o coswt, the atomic
Hamiltonian is specified by

W= iw;ayTa+ 2y, 0,0, + v a0, +Hoc.) coswt,

where v;;= —-TL“ . ﬁo/h'. The notation has been de-
scribed in detail previously.® Briefly, the a’s
and a T’s are boson annihilation and creation oper-
ators (with [a;,a;"]=6,,), which describe a num-
ber of atoms behaving cooperatively. They can
also be interpreted in the present calculation, if
normalized by Ea.-Ta,» =1, as single-atom energy-
state amplitudes when expectation values are
taken.

It is useful to introduce the notation A = (w,,
~Wy), 0 =%(w,, + wy,) —w. The fact that our inter-
est lies in a resonant phenomenon, and that the
two atomic frequencies are relatively close, is
indicated by the inequalities d <w, A <w, respec-
tively. These inequalities permit the use of the
familiar rotating-wave approximation. With its
use, and with the change of variables

a, =z, expl-i(w, + 0)t], a,=z,expl-i(w,-A)],
as =25 expl—i(w, - O)t],
the equations of motion can be written
2, —ibz, ==iy,,2,,
2, HIAZy = =Ty 2, ~ 1Y 52,

2, +i02, =—iy,,2,.
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Note that (a; "a;) =(2;'z;), and that this quantity
describes the probability of finding the atomic
system in the ith level (when 2)z; "z, —a con-
stant of motion—is set equal to unity). Since no
interaction with other quantum mechanical sys-
tems is presently involved, we can treat the z;’s
as c-numbers and ignore the expectation-value
brackets.

We consider the case z,(0) =1, 2,(0) =2,(0) =0,
and investigate |2,¢)1% and I2z,()I%. By use of
the Laplace transformation, given by £ {z; ()}
=J,"dt z;(t)exp(~ st), the equations of motion can
be solved routinely. The formal result is z; ()
=& 4N;(s)/D(s)}, where £ indicates the inverse
Laplace transformation, N, =—iy,,(s + ¢0), N,
==712V23, and

D =53 +iAs?% + (0% +y?)s +iAS% +iday?,

with ¥2=v,2 +7,5°, and @ = (r,,2 = v5%)/¥%. The
three roots s,, s,, and s, of the cubic polynomial

| 2,12 =%%2(1 +a)M ™2 sin®M¢

D(s) determine the z;’s according to the formula
£7{(bs +c)/D} == W1 Dlbs, + c)(s, - s, )exp(s ),

the summation being over the three cyclic permu-
tations of i#j#k, with W =(s, = 5,)(s, — S3)(S3 = 5,).
The general expression for the roots in terms of
the four parameters A,5,y%, and @ is too compli-
cated to give physically transparent results. The
present discussion will be restricted to certain
ranges of the parameters that are both interest-
ing, physically, and yield simpler exact or ap-
proximate expressions.

The simplest case is that of 6 =0, which may
be regarded as the case of exact two-photon veso-
nance, since the pump frequency is the mean of
the two oscillator frequencies, and complete popu-
lation inversion (12,1%2=1) corresponds to the ab-
sorption of two photons from the driving field. In
this case s, =0, S, 5=—$iA+iM, where M = (*
+ £AZ%)M2and the occupation probabilities are
given by®

l2,12=51 = a?)[1 + cos®Mt - 2 cosyAt cosMt — (A /M) sinyAt sinMt +(A2/4M?) sin?Mt).

The familiar case of driven two-level system is
described by setting y,; =0 (or @ =1), a procedure
that exhibits 21y,,| as the Rabi frequency asso-
ciated with the two lower levels in the absence of
the third. Analogously, 2ly,,| may be regarded
as the Rabi frequency associated with the upper
pair of levels. Another simple exact solution is
obtained for 6,=-ay?/A, since this value also
yields s, =0. Inspection of D shows that the roots
and 12,12, for this case, can be obtained from
the resonance case merely by the replacement of
v2 by ¥Z +6,2.

For other values of 6, none of the roots of D
vanish, and we consider two ranges of the param-
eters for which at least one of the roots is small,
so that perturbation theory can be used. These
ranges are y2<<A?% and y*> A2, Since y is propor-

Izz[ 2~ L (1 +a) sin?yt - 2(6/y)sinyBt sinyt ], Izgl Zx

where B =(A - 3ad)/2y. (Setting a =A =0 yields
the result for a spin-1 system.)

At resonance (6 =0), the exact solution shows
that |z,(t)|2 oscillates nonsinusoidally and non-
periodically, in general, and has local maxima
with a range up to 1 —a?, The picture simplifies
considerably for weak pumping (#3/A%<<1) and
for strong pumping (/?/A%>1). For weak pump-

tional to E, the first range may be considered
that of weak pumping (with both Rabi frequencies
small compared to the difference between the two
atomic frequencies) and the second range that of
strong pumping. In both ranges we look at the
solution in the neighborhood of resonance, and
consider 62<y2, For weak pumping, one obtains

l2,12=00,,2/a7),

| 24| 2=y4(1 - @)™ Y sin®4 (L2/A) +0(2/A%)],
where T'=9%+4A252+ 4006y, and quantities of
order y2/A% are not written explicitly since they
are irrelevant to the present argument. (It can
be shown that |z,12 does not differ qualitatively
from that for weak pumping at resonance.) For

strong pumping, to first order in A/y and 6/y,
one obtains

L(1 - a?)|1 +cos®t -2 cosyBt cosyt — 23 sinyBt sinytl,
4

|ing, the solution at resonance becomes, in lowest
order,

|2,/ 2~ 2(/2/8%) (1 +a)sin®3At,
| 25| 2% (1 - @®) sin®4(/ANL.

For strong pumping, the solution at resonance
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becomes, in lowest order
| 2,12~ L (1 +a)sin®¢,
| 24| 2% L (1 - @®)(1 +cost — 2 coskAt cosyt).

Here, the oscillation of 12,12 is 50% modulated
with frequency A. We note that the largest maxi-
mum of 12512 is 1 —a?,

Consider, now, the significance of the results
for off-resonant pumping (6 #0). In the weak-
pumping case, in lowest order, only |z,1% and
|z,12 (where |z, 12~ 1~ 12,1%) are nonnegligible.
For detuning given by 6 =—ay?/2A, the oscillation
amplitude is maximized, so that

| 2,1 2% sin?} (v /A) (1 — @2)V/ 22,

This describes the Rabi oscillation of a two-level
system driven on (the two-level) resonance, with
complete population inversion. The effective
(two-level) Rabi frequency is an order of magni-
tude (v/A) smaller than the individual Rabi fre-
quencies 21y;; 1, and two orders of magnitude
smaller than that of the small rapid oscillations
of 1z,1%. The fact that a weak field properly de-
tuned from exact two-photon resonance can pro-
duce complete population inversion and spin--
type periodic behavior in a three-level system
was first deduced by Larsen and Bloembergen,?
and has reappeared in other work on multilevel
systems.’ One can regard this phenomenon as
the spin-%-type resonance of a three-level sys-
tem. Inspection shows that the detuning brings
the MF frequency closer to the frequency that
couples more strongly to the field (with the
larger v,%).

In the strong pumping case (y2/A%2> 1), we can
see, by comparing the lowest-order terms, that
the modulation frequency A of the 12,12 oscilla-
tions in the resonant case is replaced by A —3ad
in the off-resonant case. The essential effect,
therefore, of tuning the field off resonance is the
variation of this modulation frequency. By the
choice 0 =A /3w, the modulation is eliminated en-
tirely,® with all the maxima having the same
(largest) value. The result is a periodic solution,
in lowest order, given by

|z,/2~ (1 +a)sin¥t,
[ 25| 2~ £ (1 = @®)(1 = cosyt)?,

This is the only peviodic solution for the 1z;1*’s
in the case of stvong pumping. It resembles the
Rabi oscillation of a spin-1 system driven near
resonance, the only difference being the o terms.
The energy oscillates with frequency v, and both
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upper levels participate equivalently, in the
sense that the population reaching the upper level
may be regarded as going through the middle
level in one cycle (of 12,1%).}° The detuning 6
necessary to produce this resonance brings the
MF frequency closer to the more weakly coupled
frequency, and can be interpreted as compensa-
tion for the weaker coupling. It is not unreason-
able to suppose that such compensation exists
also for higher multilevel systems. Finally, one
should note that the strong-pumping case is the
only case in which substantial two-photon excita-
tion can occur in the presence of significant relax-
ation (absent in the present idealized model).

Enlightening discussions with Dr. Ady Mann are
gratefully acknowledged. This work was sup-
ported, in part, by the U. S. Army through its
European Research Office.
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ic parameters by varying the field strengths; in fact,

if the driving-field frequencies are resonant, respec-
tively, with the transition frequencies, and the two Rabi
frequencies are equal, the mathematical problem be-
comes similar to that of a spin-1 system driven on
resonance. It should be noted, however, that such a
phenomenon is different from the one considered pre-
sently. In the present instance of a single (monochro-

matic) driving field, the ratio of the two Rabi frequen-
cies is determined solely by the atomic parameters;

if the two transition frequencies are different, spin-1-
type Rabi oscillation can be achieved only if the two
Rabi frequencies are urnequal, since the frequency shift
from two-photon resonance required to produce this
oscillation depends inversely on the parameter «,
which vanishes for equal Rabi frequencies.
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Numerical studies of the ablation-driven Rayleigh-Taylor instability in laser-acceler-
ated targets show growth rates typically within a factor of 2 of the classical growth rate.
The appearance of the “Kelvin-Helmholtz” instability depends on the form of the initial
perturbation and also on the laser irradiance, Perturbations of the target surface and

laser irradiation are simulated and compared.

PACS numbers: 52.50.Jm, 47.20.+m, 52.35.Py, 52.65.+z

The achievement of inertially confined thermo-
nuclear fusion in laser driven pellets requires
that a hollow shell be symmetrically imploded to
less than one tenth of its initial radius in order
to generate the high densities needed for signifi-
cant thermonuclear burn.' The use of a hollow
rather than solid pellet reduces the peak power
requirement from the laser which decreases as
the ratio of shell radius to thickness, a=R/AR,
is increased. Unfortunately the hollow shell tar-
gets are hydrodynamically unstable in the abla-
tion region where the pressure and density gra-
dients are of opposite sign, i.e., Vp+Vp<0. The
instability in this region is similar to the classi-
cal Rayleigh-Taylor (RT) instability of two in-
compresSible fluids? but is complicated by the
finite density and temperature scale lengths,
heat conduction, compressibility, and flow of the
ablating material. Various analytic approxima-
tions have been made to estimate the growth
rates of the instability,** and numerical simula-
tion with use of both Eulerian and Lagrangian
formulations have also been employed.®™”

The simulation data consistently show growth
rates y reduced by a factor of 2 or 3 below the
classical growth rate for an Attwood number y
=(ka)"? of unity, where k is the wave number and
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a the effective acceleration.

There is a qualitative difference between the
results of McCrory et al.’ and those of Emery,
Gardner, and Boris” regarding the appearance
of a Kelvin-Helmholtz (KH) type of instability as
evidenced by a broadening of the tips of the RT
“spikes” as they fall into the less dense medium.
These differences have at times been attributed
to the numerical differences of the Eulerian and
Lagrangian formulations, and particularly to a
supposed “stiffness” of the triangular Lagrangian
mesh induced by the von Neumann artificial vis-
cosity used in all Lagrangian codes. We report
here the results of simulations performed with
an Eulerian code (which does not use an artificial
viscosity) which show that the appearance of the
“KH” features is dependent on the initial condi-
tions of the problem and cast some doubt as to
whether it is indeed a KH instability. Our re-
sults agree well with both Emery, Gardner, and
Boris and McCrory et al. for the rather dissimi-
lar cases that they considered.

The simulations are performed with an Eulerian
formulation in cylindrical (7, z) geometry. The
code includes laser absorption by inverse brems-
strahlung, and electron and ion energy transport
by flux-limited thermal conduction and fluid mo-
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