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use the reduced Hamiltonian to understand not
only confinement but also the existence of a finite
mass gap. In a Monte Carlo simulation based on
Eq. (2), the discreteness of the spectrum is par-
ticularly welcome. In simulations based on the
infinite-volume action, it is sometimes found
necessary to enforce a projection on the zero-
momentum sector by time-consuming summa-
tions. In the reduced model, this is done auto-
maticallyy.

Following the lines of Ref. 6, an infinite num-
ber of flavor-carrying fermions can be added to
the pure gauge Hamiltonian. The resulting quan-
tum matrix problem is expected to reproduce an
impressive list of strong-interaction features:
confinement in the absence of matter fields, ap-
proximately linear Regge trajectories, finite
width resonances, glueball states, multiparticle
production, flavor singlet-nonsinglet mass split-
tings, and chiral symmetry breaking.

In the infinite-volume theory, the idea that a
Hamiltonian version of large N, could reproduce
glueball masses in addition to loop expectation
values is implicit in the collective field formal-
ism. '" Recent numerical simulations" have
demonstrated the necessity of adding constraints
in the form of inequalities at weak coupling. The

quenching of the Eguchi-Kawai Hamiltonian
seems to be a simpler procedure and therefore
might prove to be more advantageous.
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The exchange of gluons in the initial or final state of hard processes is shown to build

a Q -dependent phase shift which may be observed as an oscillatory scaling violation in
infrared-dominated processes. The non-Abelian structure of the phase can affect cross
sections for experiments as diverse as pp elastic scattering at fixed angle and dilepton
production in hadronic collisions, resulting in oscillatory components. These oscillations
may already have been detected.

PACS numbers: 12.35.Eq, 12.35.Cn, 13.85.Dz, 13.85.@k

Quantum chromodynamics (QCD) is a theory re-
quiring interaction via the exchange of massless
vector gluons. Most calculations within perturba-
tive QCD inevitably encounter infrared diver-
gences, which must be organized to extract mean-
ingful predictions. A simple physical interpreta-
tion of the technical problem involved recognizes
that, because of the long-range character of the
interaction, the usual free asymptotic states are

not appropriate. One effect of initial- and final-
state interactions is a distortion of the propaga-
tion of color charges (e.g. , quarks) and is de-
scribed by a momentum-dependent phase shift.
By analogy with quantum electrodynamics (QED)
where this effect is well understood, ' we call the
leading component of the phase (describing near-
ly on-shell Green functions of charged particles
in QCD) the quantum chromodynamic Coulomb
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phase shift (QCDCP). This phase shift is a very
general feature of massless interaction in either
perturbatively resummed calculations or non-
perturbative (coherent-state") approaches. The
purpose of this Letter is to point out that when
quarks are combined into hardons, the QCDCP
introduces important eff ects. Measurement of
the phase through interference effects in hadronic
amplitudes thus provides a superb probe of the
underlying dynamics.

In approximations based on a potential one can
obtain a phase shift from familiar eikonal tech-
niques which have generalizations in field theory.
The perturbative approach we use, on the other
hand, is based on the observation that techniques
for resumming infrared (ir) divergences in a
gauge theory (QED or QCD) can be applied to the
QCDCP. The well-known exponentiation of lead-
ing double logarithms (LDL) in QCD' is accom-
panied by the QCDCP as follows: Order by order
in perturbation theory, one sums terms of the
form n, ln' [(-s —ie)/&'], where & is a large
scale and +' is fixed, with &, the QCD coupling
constant. General (process-dependent) analyticity
relations then require continuation via, e.g. ,

ln'[(- s —ie)/A. ')]

- ln'! s/X'! —2&i ln! s/a'! 9 (s) +0(1), (1)

which introduces imaginary parts in the usual
way if s refers to a (timelike) channel with a
threshold. While the full details of analyticity

and crossing are quite involved, in simple cases
the imaginary terms of 0[in, & ln(l s I/A. ')'~j can
be resummed into an exponential factor or phase.
The behavior of the running coupling constant
&,(p') is an important aspect of the resummation,
as will become clear below. Equally important
is the dependence of the phase on a small scale
~, which can be interpreted as the inverse of the
unscreened interaction time available for a phase
to build up.

Since the generators of the quark color-charge
algebra (&; ) are non-Abelian, it is not surprising
that the QCDCP for quarks (p) requires a color-
matrix repr esentation. Although lowest-order
(Born) amplitudes are known to be eigenvectors

of real LDL (color matrix) corrections, the proof
requires that different large scales be combined
in the fixed-angle limit; for q'g -gq', e.g. , one
sets lnls I lnlt jwith + and t the usual Mandlestam
variables. We must, however, distinguish the
analytic properties of ln(- ~) and ln(-t) to find
the QCDCP, resulting in color-matrix exponentia-
tlon.

The coefficients needed for the QCDCP can be
interpreted as matrix-valued imaginary anoma-
lous dimensions that can be obtained from the dif-
ferential equation method of Refs. 3 and 4. Let-
ting M B" '"(g», g&) be the Born amplitude
for a Green function with & quark legs having mo-
menta g~", color index i, in the limit q~' fixed,
Q'- ~, where Q'= is„8!and & 8

—= (q +pa)', one
obtains a resummed amplitude M'& '~(g||.. .,
q~, P) given by

(2)

! [Fig. 1(a)] has a threshold; the color structure
ls that of a t-channel octet plus singlet. Straight-
forward application of Eqs. (2) and (3) yields

M'~ '"=exp[ —(NCz/2)B(Q, p2)] [exp(i cp(Q2, p2))] . . . '~ '"J'lf z'&

where B(Q2, p ) =61n(Q /p ) lnln(Q /p )/(33-2N~)
is the LDL factor in QCD with Nf ——4 flavors, &&
= T, and j!j is the scale introduced in dimensional
regularization. The phase p then satisfies

Q i~)3(s„a)y~q e' =0,(
~.(~')

BP, 2lT ~ g
(3)

M'1 '
(q, , ~ ~ ~,q„p.)

= exp(- 2C~B)exp[i&a(1+A»)]M, '1 ' '~, (4)

where [y 8],z„z'~'"=&;„,„'~;z,z', with A. '= —t '
(+t '

) for outgoing (incoming) quark fermion
number and & denotes transpose. (We can re-
place the quark mass dependence of Ref. 4 with
p in the limit considered. All q, " are directed
inwards. )

To illustrate the QCDCP, and the point that the
QCDCP need not cancel in a simple manner, we
present the example of qq'- qq' scattering.
Among the one-loop graphs giving LDL correc-
tions in Feynman gauge (Fig. 1) only one graph

(b) (c)

FIG. 1. One-loop graphs illustrating LDL corrections
for qq' —qq' in Feynman gauge.

where ~ = (6~/25N, ) lnin(Q2/p'), 6» = —N, 5,. '&6,, '2,
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N& =4, &, =3 in QCD, and color indices are shown
in Fig. 1.

Equation (4) illustrates two significant features:
(a) A phase of order lnln(Q /p2) is asymptotically
characteristic of the QCDCP including running-
coupling-constant effects. This is contrasted
with QED, where replacing a, (g) —», gives a
phase of order ln(Q'/p'). (b) The color matrix
exp(i&uX) is not unimodular. Letting b' =(A»')/
(I), a' = g»)'/b'(I)', where the angular brackets
denote color traces with a particular state, one
finds

1(exp(i~A»)) I' ~1+a'+(1- a~) cos(2b~).

This indicates that the matrix QCDCP can have
observable interference consequences even when
there is no other interfering amplitude. To ex-
tend this conclusion to the hadron level, one
must combine a complete set of graphs; indeed
Qg', O'Q', and qg' multiple elastic scattering in
QCD are all characterized by matrix exponentia-
tion of the type displayed in Eq. (5). Of course,
some model is required to translate relations for
quark amplitudes into phase dependence of hadron
amplitudes, and at this point the intricacies of
screening arising from the color-singlet nature
of hadrons is crucial. Although a complete under-
standing of such problems is still under develop-
ment, ' it is now accepted that corrections of LDL
order at the quark level produce important
phenomenological eff ects in many hadronic ob-
servables. ' We claim that the QCDCP introduces
an important feature here. Specifically an experi-
mental signal of interference of the QCDCP is an
additive, oscillating component with argument &

in cr oss sections. At first sight an oscillation
proportional to ln in(Q'/p, ') may appear to be un-
observably slow, but if the scale p,' is small
(e.g. , W,

= AQcD 100 MeV) one finds ~ - const
+ In(Q'/p') In(W'/p, ') +. . ., i.e., almost logarith-
mic oscillations. Oscillations of exactly logarith-
mic order due to the QCDCP can also be found,
in general. , in terms suppressed by powers of
exp(- lns ln lns). ' '

In the following we discuss three G.lvel-&~ ex.-
perimental situations whose common link is LDL
sensitivity and the presence of a timelike scale:

(1) Fixed angle elastic s-cattering. —Mueller'
has recently shown that the LDL-suppressed hard-
scattering contributions of Landshoff' give a lead-
ing asymptotic power-law dependence (do/dt- s ). The QCDCP effect in this case yields an
additive component to do/dt which oscillates with
ln lns period. ' In fact, data for PP -PP at fixed

angle (&,. =90') are known to oscillate substan-
tially about the power-law relation and indeed
with roughly logarithmic period. Although the
available data certainly do not correspond to
asymptotic energies, the qualitative agreement
is very encouraging. '

(2) The Qz, distribution of dilePtons. —Many
authors" have concluded that do'/d'Q (for dilep-
tons of momentum Q" produced in hadronic colli-
sions) can be calculated in the small-transverse-
momentum (Qr) region by resumming terms of
LDL origin. In this case, Qr serves as a small
scale reminiscent of a cutoff. If the various
QCDCP's of hard-scattering subprocesses do not
cancel, then oscillations will occur with respect
to Q~' in da/d'Q (at fixed Q' and rapidity). Al-
though the data available are not yet sufficiently
precise to be conclusive, they are consistent with
roughly logarithmic oscillations about recent
theoretical calculations" (which include the LDL
effects but not the QCDCP). Such a signal could
be of great importance if it persists in more pre-
cise data.

(3) e'e - y + &
' +&.—Recent1y Collins and

Soper' have demonstrated that the small-trans-
verse-momentum distribution of hadrons in oppo-
sitely oriented jets produced in e e collisions
can be calculated in QCD. Since all scales are
timelike in this case, the QCDCP cancels exactly
for the cross section proposed in Ref. 12. An in-
teresting (but experimentally difficult) variation,
however, is to choose one of the hadrons to be a
photon. In that case, interference between final-
state [Fig. 2(a)] and initial-state [Fig. 2(b)]
bremmstrahlung will make the QCDCP observa-
ble. Letting x z

= 2E z/(Q')'", where (Q')"' is the
total energy and E

&
the photon energy in the e'e

c.m. frame, one finds a mismatch of hadronic
scales Q' [Fig. 2(a)] and Q'(1-xz) [Fig. 2(b)1 in
the interference term [Fig. 2(c)]. This produces
a charge-asymmetric term which oscillates like
ln[ln(l —x z)Q'/lnQ'] —ln(1 —x &) at fixed Q'. Let
us remind the reader that related QED charge-

I

(C)

FIG. 2. (a) Final-state and (b) initial-state brems-
strahlung contributions to the reaction ee -y7t y dis-
cussed in the text. (c) Interference leading to the
QCDCP oscillations. Ovals represent higher-order in-
teractions.
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asymmetry calculations" show that such observa-
bles are large enough for experiments to detect.

In conclusion, we have shown that the QCDCP is
a prediction of perturbative QCD with observable
consequences. The non-Abelian aspects of its
behavior at the hadron level are complicated and
constitute a challenging problem. Data for PP
elastic scattering indicate that the QCDCP has
been seen. While nonleading effects are undoubt-
edly important, theoretical techniques that are
becoming available" promise to make the QCDCP
an attractive and sensitive tool for probing had-
ron dynamics.

We acknowledge useful discussions with A. P.
Contogouris, C. S. Lam, A. H. Mueller, G. Ster-
man, and P. Yeung. This work was supported in
part by the National Sciences and Engineering Re-
search Council of Canada, the National Research
Council of Canada, and the Quebec Department of
Education.

Note added. —Recent work by A. Sen [Fermilab
Report No. Fermi-pub 82/66 THY (to be pub-
lished)] confirms that the QCDCP is computable
for qp scattering in QCD, and goes on to specify
p o +QcD [in agreement with the leading-order
prediction of Eq. (8)] when nonleading logarithms
are summed.
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