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Intermittent Chaos in Josephson Junctions

E. Ben-Jacob, '~ I. Goldhirsch, b and Y. Imry '
Institute for Theoretical Physics, University of California, Santa Barbara, California 9M'06

alld

S. Fishman
Baker ~boratory, Co~nell University, Ithaca, New Fork 14853

(Received 18 August 1981; revised manuscript received 3 September 1982)

The intermittent-type chaos occurring in rf- and dc-current-driven Josephson junctions
is investigated. A simple physical model is proposed and is used for an analytic calcu-
lation of the power spectrum. The latter has a broadband part which decays algebraically
at high frequencies. Comparison with numerical results shows good agreement. Further
application and generalizations of this approach are outlined.

PACS numbers: 05.40.+ j, 47.20.+m, 74.50.+r, 82.20.-w

One of the most intriguing experimental fea-
tures exhibited by some externally driven dissipa-
tive dynamical systems is the occurrence of
sequences of periodic states separated by gaps of
chaotic, intermittent nature. Such an effect has
been recently observed in chemical reactions";
it appears in Josephson junctions' and may
exist in Rayleigh-Bd'nard' and Taylor" systems.
Motivated by the recently introduced ideas of
universality in chaotic systems, ' we analyze a
sirnPle model giving rise to such phenomena. We
use the resistively shunted junction (RSJ) model'
for the Josephson junction driven by both ac and
dc current sources (or a pendulum with dissipa-
tion driven by external constant and periodic
forces). The model is described by the following
equation of motion":

8+ G9+sin6 = I+A sin(e, „t),
where G = (~ „RC) '; ~ t' = 2eI „/hc; & is the phase
difference across the junction; and R, C, and I„
are resistance, capacitance, and critical current
of the junction, respectively. Time (t) is meas-
ured in units of co~ ', and ~,„ is the external fre-
quency measured in units of ~~. I and A. are
measured in units of I~.

Many aspects of this model have been investi-
gated previously. "' " Here we shall focus on
the case where the I-V characteristic is as
shown in the inset in Fig. 1 (from Ref. 4). When
the current I satisfies I &I, (step "0") the solu-
tion of Eq. (1) is periodic (a limit cycle) but with
a vanishing (6) (or average dc voltage 7). A

different periodic Vg0 solution holds for I, &I
&I, (step "1"). When I, &I&I, (the lowest dotted
region in Fig. 1), no periodic solution is stable
and the system behaves "chaotically. " Similar
behavior occurs in higher gaps (dotted regions
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FIG. 1. Results of a numerical simulation of Kq. (1).
The parameters are ~=0 7~ ~'ex =0 25& A=O 4& and
I= 0.7155. Inset: a full I-p characteristic. The dotted
regions in the inset are the chaotic gaps.

in the inset in Fig. 1). Figure 1 shows a plot of
0 vs time for I, &I&I, obtained from a numerical
solution of Eq. (1). The plot shows a random ap-
pearance of "upper" and lower peaks, each peak
occurring for a time roughly equal to the forcing
period. The upper peaks resemble the type of
oscillations occurring in step 0 whereas the low-
er peaks resemble the oscillations occurring in
step 1. This leads us to propose the following
physical picture: When we set the current inside
the gap to I, &I&I„ the solution hops between the
two neighboring limit cycles corresponding to I
&I, and I, &I&I,. The solution makes several
revolutions around one (unstable) cycle, then
moves to the second one and so on. We now sim-
plify the picture by assuming that each such revo-

1982 The American Physical Society 1599



+GLUME 49, NUMBER 22 PHYSICAL REVIEW LETTERS 29 NovxMBER 1982

lution takes exactly a time T equal to the period
of the external forcing time. We also assume
that 6 =y, (t) whenever the system is in a state
corresponding to the step-0 cycle and likewise 9

=y, (t) when it is in a. step-1 cycle. y, (t) and y, (t)
are periodic functions of period T. Finally, we
assume that after completing a step-0 cycle the
solution has a probability P, , to move instanta-

neously to the step-1 cycle (a probability 1 P-, ,
to repeat the 0 cycle once again). P» is defined
similarly. This defines our model. An experi-
mental or numerical verification of its conse-
quences will provide a check for our assumed
statistical nature of the dynamics.

One such consequence is the power spectrum
S((u):

S(&u)= lim (1/t)f dt J dTe' '(f(t)f(t+~)),
g ~ 00

(2)

where f= 5 and the average (denoted by angular brackets) is over the previously defined ensemble with
probabilities P, „etc. Let us divide the time line azis into segments of length T. By assumption, in

any interval (n -1)T-t &nT, n being an integer, f(t) equals either y, or y, (t). Obviously, we can as-
sume without loss of generality that t in Eq. (1) satisfies 0 - t & T or t =xT, 0 &x&1. The time averag-
ing with respect to the initial time (1/t) J'dt can then be replaced by J, dx. Consequently

S((u)=f dx Q f dte' '(f(xT)f(xT+T)).
~ w OO

For a, given u, nT-xT+T &(n+1)T. 'Thus for given n, xT+7. is in the nth segment. xT is always in
the first segment. This means that f(xT) can be replaced by y;(xT) and f(xT+7') =y, (xT+r), i, j being
0 or 1. Let us define P(i,j,n) as the probability of the solution to be in the state (cycle) "i"in the
first segment (n=0) &nd in the state "j"in the nth segment. The average in Eq. (2) can be replaced by

S(~)= p f'd p f'" ' ""d~e' 'P(i, j, IeI)y, (xT)y, (xT+T).
e, y =0 n=-~

Shifting the integration variable w in the integrals in Eq. (4) by (n -x) T and employing the assumed
periodicity of y, we obtain

S(~)= g f'd P e""""P(i,i, I~l)y;(xT)J, e"'y, (T)dT.
iy /=0 n =-~

Defining
T

f;(~) =
f,

e' 'y;(T)dT

we obtain

S(~) =(1/T) 2 Z e""'P(g,j, l~l)f, (~)f;*(~).
n= —oo i, j=O

Next, we calculate P(i, j, n). Let us define a 2x2 (transfer) matrix E by its elements: E„=l P», -
E„=P», E»=P», and E»=l-P». The (i, j) element (j, i=0, 1) of E is the probability of having a
j-type cycle in time segment n =X, provided the cycle in time segment n = 0 is of type i. The probabil-
ity of having a cycle of type i is P; =P, , /(P, , +P, ; ). Hence, P(i,j,n) is given by

p(i,j, n) =Ip, , /(p;, +p„,)](E");,.
With use of the definition of the matrix E and Eq. (7), P(i, j, n) is readily calculated as a function of

i, j, n, Pyo and POy with the result

P(0, 0, n) =P,'+P,P,(1-P, , -P, ,)", P(l, 1, n) =P, +P@,(1 —E', —P,)",

(7)

P(l, 0, n) =P(0, 1,n) =PP, P,P,(l -P, , --P, ,)".
Next, the value of P(i, j, n) is substituted into Eq. (6), and the summation is performed. The result

is

~(~) =(1/T) I fP(~0) +P,f,(~) I' p 6(~T —»~) +(1/T) If,(~) f,(~) I'P.P,Q(~)-, (9)
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where

Q(&u) = [1 —(1 -Po, -P»)'] /[1+(1 —P» -P»)' —2cos(~T)(1 -P» -P»)] .
We note that S(~) consists of two parts -a, series
of 6 functions at the fundamental frequency and its
harmonics, weighted by a "form factor"

i P,f,
+P,f, i', and a "continuous" broadband part. The
periodic-type part of the spectrum. is due to the
system spending integer numbers of cycles in the
two "states. " In reality these I) functions should
be somewhat broadened, e.g. , by dephasing while
hopping between states and by amplitude modula-
tions. The broadband part of the spectrum is, of
course, a characteristic of the chaotic nature of
the solution.

In order to understand the natu"e of a typical
spectrum we now employ simple functional forms
for y,(t) and y, (t). Since we know'" that in the
0 state there is no phase change after the comple-
tion of a cycle whereas in the step-I state the
total phase change in a cycle is 2r, we assume

y, (t) =a, sin(2~t/r +y,),
(10)

y, (t) =a, sin(2~t/T+ y, ) +2~/T.

The Ansatz in Eq. (10) can be justified on the
basis of a perturbation theory" (e.g. , in a small
A). Using it we can easily calculate the Fourier
transforms f,(Iu) and f,(~) and substitute in Eq.
(6). For high enough cu (~»»/T), ufo(~) I'
cc 1/~' and if, (&u) I'~l/&u'. Thus the spectrum
decays algebraically at high frequencies. If a,

»a, the term
if,(&u) -f,(cu) i' will be dominated

by if, (~) i' and thus the decay of the spectrum
will go like 1/&u' for a. broad range of frequencies.
For asymptotically large frequencies the 1/&u'

behavior dictated by the presence of f,(&u) will
dominate. In practice, for frequencies greater
than the inverse hopping time between the two
cycles (neglected in our model), S(~) will decay
in a stronger fashion. This type of algebraic de-
cay of the power spectrum is reminiscent of the
one actually observed in Bernard experiments. '"

Finally, we present a comparison of our calcu-
lation with a numerical simulation of Eq. (1).
The relevant parameters are given in the figure
captions. Figure 2 shows a plot of lnS(u), ob-
tained by numerically solving Eq. (1). The inset
shows the (8(t) e(0) ) correlations from which
S(&u) is derived. Figure 3 shows the broadband
part of S(&u) from Eq. (9) for two different sets of
phases cp„y, [see Eq. (10)]. Except for the
oscillations in Fig. 3 that depend on the choice of
phase the two figures agree very well. These
oscillations are "smeared" in practice (Fig. 2)
because the cycles do not always start at the
same phase as assumed in the model.
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FIG. 2. S() as calculated numerically from Eq. (1).
The parameters are given in Fig. l. Inset: the time
correlation function (8(t), 8), time being measured in
units of 27t-j~z,

FIG. 3. The broadband part from Eq. (9). The param-
eters in Eq. (10) are a0=0.45, ai ——0.9, 2w/7'=0. 25 for
both curves and yp=0 p&

——1.5 for the solid curve and

gap = 0 25 pi = 1 for the broken curve. Note that the
vertical units are the same in Figs. 2 and 3 but the zero
of lnS(~) is shifted.

1601



voLUME 49, NUMBER 22 P 8YSI t" AL REVIEW LETTERS 29 NovEMBER 1982

So far we have shown that the very simple idea
of random hopping between two limit cycles can
explain the general features of the spectrum of
intermittent chaos in the Josephson junction.
Noting that "hopping" between different portions
of phase space is a very general phenomenon in
many dynamical systems (e.g. , Lorenz equa-
tions"), one of which exhibits I/f noise, " it is
interesting to ask how our simple model can be
used as a starting point for modeling more as-
pects of intermittent chaos (e.g. , the 1/f noise),
in an analytic way. As noted by D'Humieres et
al. ,

"noise plays a crucial role in modifying the
results of our model. It is therefore interesting
to include noise and dephasing (and perhaps hop-
ping between more than two states) to obtain a
better understanding of the phenomena underlying
intermittent chaotic behavior. Parts of these
aspects are under active investigation.

In conclusion, we have shown how a simple
physical model can account for the power spec-
trum of an intermittent-type chaotic spectrum.
The algebraic decay of the spectrum at high fre-
quencies is easily understood on the basis of our
model. Finally, we have mentioned possible gen-
eralizations of this work, which can help one to
gain a better understanding (qualitatively as well
as quantitatively) of the physics of intermittency.
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